Module

# Aviary.Birds

Package
purescript-birds
Repository
awkure/purescript-birds

### #applicatorSource

``applicator :: forall b a. (a -> b) -> a -> b``

A combinator - applicator

`Λ a b . (a → b) → a → b`

`λ f x . f x`

### #baldeagleSource

``baldeagle :: forall g f e d c b a. Semigroupoid d => d g c -> (f -> d b g) -> f -> (e -> d a b) -> e -> d a c``

Ê combinator - bald eagle

B(BBB)(B(BBB))

`Λ a b c d e f g . (e → f → g) → (a → b → e) → a → b → (c → d → f) → c → d → g`

`λ f g s t h u v . f (g s t) (h u v)`

### #becardSource

``becard :: forall d c b a. (c -> d) -> (b -> c) -> (a -> b) -> a -> d``

B3 combinator - becard

B(BB)B

`Λ a b c d . (c → d) → (b → c) → (a → b) → a → d`

`λ f g h x . f (g (h x))`

### #blackbirdSource

``blackbird :: forall e d c b a. Semigroupoid e => e b a -> (d -> e c b) -> d -> e c a``

B1 combinator - blackbird

BBB

`Λ a b c d . (c → d) → (a → b → c) → a → b → d`

`λ f g x y . f (g x y)`

### #bluebirdSource

``bluebird :: forall d c b a. Semigroupoid a => a c d -> a b c -> a b d``

B combinator - bluebird

S(KS)K

`Λ a b c . (b → c) → (a → b) → a → c`

`λ g f x . g (f x)`

### #bluebird'Source

``bluebird' :: forall e d c b a. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c``

B' combinator - bluebird prime

BB

`Λ a b c d . (a → c → d) → a → (b → c) → b → d`

`λ f x g y . f x (g y)`

### #buntingSource

``bunting :: forall f e d c b a. Semigroupoid b => b d c -> (f -> a -> b e d) -> f -> a -> b e c``

B2 combinator - bunting

B(BBB)B

`Λ a b c d e . (d → e) → (a → b → c → d) → a → b → c → e`

`λ f g x y z . f (g x y z)`

### #cardinalSource

``cardinal :: forall c b a. (a -> b -> c) -> b -> a -> c``

C combinator - cardinal

S(BBS)(KK)

`Λ a b c . (a → b → c) → b → a → c`

`λ f x y . f y x`

### #cardinal'Source

``cardinal' :: forall e d c b a. Semigroupoid b => b d c -> (b e c -> a) -> b e d -> a``

C' combinator - cardinal prime

S(BBS)(KK)

`Λ a b c d (c → a → d) → (b → c) → a → b → d`

`λ f g x y . f (g y) x`

### #cardinalstarSource

``cardinalstar :: forall d c b a. Semigroupoid a => a d c -> a c b -> a d b``

C* combinator - cardinal once removed

BC

`Λ a b c d . (a → c → b → d) → a → b → c → d`

`λ f x y z . f x z y`

### #cardinalstarstarSource

``cardinalstarstar :: forall e d c b a. Semigroupoid b => ((b e d -> b e c) -> a) -> b d c -> a``

C** combinator - cardinal twice removed

BC*

`Λ a b c d e . (a → b → d → c → e) → a → b → c → d → e`

`λ f s t u v . f s t v u`

### #cdSource

``cd :: forall d c b a p. Semigroupoid p => p a b -> (d -> p c a) -> (d -> p c b)``

compose2

### #cdcSource

``cdc :: forall e d c b a p. Semigroupoid p => p a b -> (c -> d -> p e a) -> (c -> d -> p e b)``

compose3

### #cddSource

``cdd :: forall f e d c b a p. Semigroupoid p => p e f -> (a -> b -> c -> p d e) -> (a -> b -> c -> p d f)``

compose4

### #cddcSource

``cddc :: forall g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> p g a) -> (c -> d -> e -> f -> p g b)``

compose5

### #cdddSource

``cddd :: forall h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> p h a) -> (c -> d -> e -> f -> g -> p h b)``

compose6

### #cdddcSource

``cdddc :: forall i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> p i a) -> (c -> d -> e -> f -> g -> h -> p i b)``

compose7

### #cddddSource

``cdddd :: forall j i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> p j a) -> (c -> d -> e -> f -> g -> h -> i -> p j b)``

compose8

### #cddddcSource

``cddddc :: forall k j i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> j -> p k a) -> (c -> d -> e -> f -> g -> h -> i -> j -> p k b)``

compose9

### #dickcisselSource

``dickcissel :: forall e d c b a. Semigroupoid b => b d c -> (a -> b e d) -> a -> b e c``

D1 combinator - dickcissel

B(BB)

`Λ a b c d e . (a → b → d → e) → a → b → (c → d) → c → e`

`λ f x y g z . f x y (g z)`

### #doveSource

``dove :: forall e d c b a. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c``

D combinator - dove

BB

`Λ a b c d . (a → c → d) → a → (b → c) → b → d`

`λ f x g y . f x (g y)`

### #dovekieSource

``dovekie :: forall f e d c b a. Semigroupoid c => c e d -> (a -> b -> c f e) -> a -> b -> c f d``

D2 combinator - dovekie

BB(BB)

`Λ a b c d e . (c → d → e) → (a → c) → a → (b → d) → b → e`

`λ f g x h z . f (g x) (h z)`

### #eagleSource

``eagle :: forall f e d c b a. Semigroupoid c => (a -> b -> c e d) -> a -> b -> c f e -> c f d``

E combinator - eagle

B(BBB)

`Λ a b c d e . (a → d → e) → a → (b → c → d) → b → c → e`

`λ f x g y z . f x (g y z)`

### #finchSource

``finch :: forall c b a. a -> (c -> a -> b) -> c -> b``

F combinator - finch

ETTET

`Λ a b c . a → b → (b → a → c) → c`

`λ x y f . f y x`

### #finchstarSource

``finchstar :: forall f d e c b a. Semigroupoid e => (f -> (e b a -> e c a) -> d) -> e c b -> f -> d``

F* combinator - finch once removed

BCR

`Λ a b c d . (c → b → a → d) → a → b → c → d`

`λ f x y z . f z y x`

### #fixSource

``fix :: forall a. (a -> a) -> a``

Fixed point Y combinator

`Λ a . (a → a) → a`

`λ f . (λ x. f (x x)) (λ x . f (x x))`

### #goldfinchSource

``goldfinch :: forall d c b a. (b -> c -> d) -> (a -> c) -> a -> b -> d``

G combinator - goldfinch

BBC

`Λ a b c d . (b → c → d) → (a → c) → a → b → d`

`λ f g x y . f y (g x)`

### #hummingbirdSource

``hummingbird :: forall m b a. Bind m => m a -> (a -> m b) -> m b``

H combinator - hummingbird

BW(BC)

`Λ a b c (a → b → a → c) → a → b → c`

`λ f x y . f x y x`

### #idiotSource

``idiot :: forall a t. Category a => a t t``

I combinator - identity bird

SKK

`Λ a . a → a`

`λ x . x`

### #idstarSource

``idstar :: forall b a. (a -> b) -> a -> b``

I* combinator - id bird once removed

S(SK)

`Λ a b . (a → b) → a → b`

`λ f x . f x`

### #idstarstarSource

``idstarstar :: forall c b a. (a -> b -> c) -> a -> b -> c``

I** combinator - id bird twice removed

`Λ a b c . (a → b → c) → a → b → c`

`λ f x y . f x y`

### #jaltSource

``jalt :: forall e d c b a. Semigroupoid b => a -> b d c -> b e d -> b e c``

Alternative J combinator - Joy

`Λ a b c . (a → c) → a → b → c`

`λf x y . f x`

### #jalt'Source

``jalt' :: forall f e d c b a. Semigroupoid e => a -> (f -> e c d) -> f -> e b c -> e b d``

J' combinator - Joy prime

`Λ a b c d . (a → b → d) → a → b → c → d`

`λ f x y z . f x y`

### #jaySource

``jay :: forall b a. (a -> b -> b) -> a -> b -> a -> b``

J combinator - Jay

B(BC)(W(BC(B(BBB))))

`Λ a b c d . (a → b → b) → a → b → a → b`

`λ f x y z . f x (f z y)`

### #kestrelSource

``kestrel :: forall b a. a -> b -> a``

K combinator - kestrel

K

`Λ a b . a → b → a`

`λ x y . x`

### #kiteSource

``kite :: forall c b a. Category b => a -> b c c``

Ki combinator - kite (false)

KI

`Λ a b . a → b → b`

`λ x y . y`

### #onSource

``on :: forall c b a. (b -> b -> c) -> (a -> b) -> a -> a -> c``

Psi combinator - psi bird - `on`

`Λ a b . (b → b → c) → (a → b) → a → a → c`

`λ f g . λ x y . f (g x) (g y)`

### #owlSource

``owl :: forall e d c b a. Semigroupoid c => (b -> c e d) -> b -> c a e -> c a d``

O combinator - owl

SI

`Λ a b . ((a → b) → a) → (a → b) → b`

`λ x y . y (x y)`

### #phoenixSource

``phoenix :: forall f c b a. Apply f => (a -> b -> c) -> f a -> f b -> f c``

Φ combinator - phoenix

`Λ a b c d . (b → c → d) → (a → b) → (a → c) → a → d`

`λ f g h x . f (g x) (h x)`

### #quackySource

``quacky :: forall c b a. c -> (c -> a) -> (a -> b) -> b``

Q4 combinator - quacky bird

F*B

`Λ a b c . a → (a → b) → (b → c) → c`

`λ x f g . g (f x)`

### #queerSource

``queer :: forall d c b a. Semigroupoid a => a b c -> a c d -> a b d``

Q combinator - queer bird

CB

`Λ a b c . (a → b) → (b → c) → a → c`

`λ f g x . g (f x)`

### #quirkySource

``quirky :: forall c b a. (a -> b) -> a -> (b -> c) -> c``

Q3 combinator - quircky bird

BT

`Λ a b c . (a → b) → a → (b → c) → c`

`λ f x g . g (f x)`

### #quixoticSource

``quixotic :: forall c b a. (b -> c) -> a -> (a -> b) -> c``

Q1 combinator - quixotic bird

BCB

`Λ a b c . (b → c) → a → (a → b) → c`

`λ f x g . f (g x)`

### #quizzicalSource

``quizzical :: forall c b a. a -> (b -> c) -> (a -> b) -> c``

Q2 combinator - quizzical bird

C(BCB)

`Λ a b c . a → (b → c) → (a → b) → c`

`λ x f g . f (g x)`

### #robinSource

``robin :: forall c b a. a -> (b -> a -> c) -> b -> c``

R combinator - robin

BBT

`Λ a b c . a → (b → a → c) → b → c`

`λ x f y . f y x`

### #robinstarSource

``robinstar :: forall d c b a. (b -> c -> a -> d) -> a -> b -> c -> d``

R* combinator - robin once removed

CC

`Λ a b c d . (b → c → a → d) → a → b → c → d`

`λ f x y z . f y z x`

### #robinstarstarSource

``robinstarstar :: forall e d c b a. (a -> c -> d -> b -> e) -> a -> b -> c -> d -> e``

R** combinator - robin twice removed

BR*

`Λ a b c d e . (a → c → d → b → e) → a → b → c → d → e`

`λ f s t u v . f s u v t`

### #starlingSource

``starling :: forall b a m. Monad m => m (a -> b) -> m a -> m b``

S combinator - starling

S

`Λ a b c . (a → b → c) → (a → b) → a → c`

`λ f g x . f x (g x)`

### #starling'Source

``starling' :: forall f c b a. Apply f => (a -> b -> c) -> f a -> f b -> f c``

S' combinator - starling prime

`Λ a b c d . (b → c → d) → (a → b) → (a → c) → a → d`

`λ f g h x . f (g x) (h x)`

### #tSource

``t :: forall b a. a -> (a -> b) -> b``

Reverse application which is probably exist inside `Lens` module

### #thrushSource

``thrush :: forall b a. a -> (a -> b) -> b``

T combinator - thrush

CI

`Λ a b . a → (a → b) → b`

`λ x f . f x`

### #vireoSource

``vireo :: forall c b a. c -> b -> (c -> b -> a) -> a``

V combinator - vireo

BCT

`Λ a b c . a → b → (a → b → c) → c`

`λ x y f . f x y`

### #vireostarSource

``vireostar :: forall c b a. (a -> b -> c) -> b -> a -> c``

V* combinator - vireo once removed

CF

`Λ a b c d . (b → a → b → d) → a → b → b → d`

`λ f x y z . f y x z`

### #vireostarstarSource

``vireostarstar :: forall d c b a. (a -> c -> b -> c -> d) -> a -> b -> c -> c -> d``

V** combinator - vireo twice removed

BV*

`Λ a b c d e . (a → c → b → c → e) → a → b → c → c → e`

`λ f s t u v . f s v t u`

### #warblerSource

``warbler :: forall m a. Bind m => m (m a) -> m a``

W combinator - warbler - omega

MM

`Λ a b . (a → a → b) → a → b`

`λ f x . f x x`

### #warblerstarSource

``warblerstar :: forall c b a. (a -> b -> b -> c) -> a -> b -> c``

W* combinator - warbler once removed

BW

`Λ a b c . (a → b → b → c) → a → b → c`

`λ f x y . f x y y`

### #warblerstarstarSource

``warblerstarstar :: forall d c b a. (a -> b -> c -> c -> d) -> a -> b -> c -> d``

W** combinator - warbler twice removed

BV*

`Λ a b c d . (a → b → c → c → d) → a → b → c → d`

`λ f x y z . f x y z z`

### #worblerSource

``worbler :: forall b a. b -> (b -> b -> a) -> a``

W1 combinator - converse warbler

CW

`Λ a b . a → (a → a → b) → b`

`λ x f = f x x`

### #(&)Source

Operator alias for Aviary.Birds.t (left-associative / precedence 1)

### #(.\$.)Source

Operator alias for Aviary.Birds.owl (right-associative / precedence 8)

### #(...)Source

Operator alias for Aviary.Birds.blackbird (right-associative / precedence 9)

### #(.:)Source

Operator alias for Aviary.Birds.cd (right-associative / precedence 8)

### #(.:.)Source

Operator alias for Aviary.Birds.cdc (right-associative / precedence 8)

### #(.::)Source

Operator alias for Aviary.Birds.cdd (right-associative / precedence 8)

### #(.::.)Source

Operator alias for Aviary.Birds.cddc (right-associative / precedence 8)

### #(.:::)Source

Operator alias for Aviary.Birds.cddd (right-associative / precedence 8)

### #(.:::.)Source

Operator alias for Aviary.Birds.cdddc (right-associative / precedence 8)

### #(.::::)Source

Operator alias for Aviary.Birds.cdddd (right-associative / precedence 8)

### #(.::::.)Source

Operator alias for Aviary.Birds.cddddc (right-associative / precedence 8)

### #(<...<)Source

Operator alias for Aviary.Birds.dickcissel (right-associative / precedence 9)

### #(<..<)Source

Operator alias for Aviary.Birds.dove (right-associative / precedence 9)

### #(<.<.<)Source

Operator alias for Aviary.Birds.bunting (right-associative / precedence 9)

### #(>..)Source

Operator alias for Aviary.Birds.cardinal' (right-associative / precedence 9)

### #(>..<)Source

Operator alias for Aviary.Birds.cardinalstarstar (right-associative / precedence 9)

Modules
Aviary.Birds