Aviary.Birds
- Package
- purescript-birds
- Repository
- awkure/purescript-birds
#applicator Source
applicator :: forall b a. (a -> b) -> a -> b
A combinator - applicator
Λ a b . (a → b) → a → b
λ f x . f x
#baldeagle Source
baldeagle :: forall g f e d c b a. Semigroupoid d => d g c -> (f -> d b g) -> f -> (e -> d a b) -> e -> d a c
Ê combinator - bald eagle
B(BBB)(B(BBB))
Λ a b c d e f g . (e → f → g) → (a → b → e) → a → b → (c → d → f) → c → d → g
λ f g s t h u v . f (g s t) (h u v)
#becard Source
becard :: forall d c b a. (c -> d) -> (b -> c) -> (a -> b) -> a -> d
B3 combinator - becard
B(BB)B
Λ a b c d . (c → d) → (b → c) → (a → b) → a → d
λ f g h x . f (g (h x))
#blackbird Source
blackbird :: forall e d c b a. Semigroupoid e => e b a -> (d -> e c b) -> d -> e c a
B1 combinator - blackbird
BBB
Λ a b c d . (c → d) → (a → b → c) → a → b → d
λ f g x y . f (g x y)
#bluebird Source
bluebird :: forall d c b a. Semigroupoid a => a c d -> a b c -> a b d
B combinator - bluebird
S(KS)K
Λ a b c . (b → c) → (a → b) → a → c
λ g f x . g (f x)
#bluebird' Source
bluebird' :: forall e d c b a. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c
B' combinator - bluebird prime
BB
Λ a b c d . (a → c → d) → a → (b → c) → b → d
λ f x g y . f x (g y)
#bunting Source
bunting :: forall f e d c b a. Semigroupoid b => b d c -> (f -> a -> b e d) -> f -> a -> b e c
B2 combinator - bunting
B(BBB)B
Λ a b c d e . (d → e) → (a → b → c → d) → a → b → c → e
λ f g x y z . f (g x y z)
#cardinal Source
cardinal :: forall c b a. (a -> b -> c) -> b -> a -> c
C combinator - cardinal
S(BBS)(KK)
Λ a b c . (a → b → c) → b → a → c
λ f x y . f y x
#cardinal' Source
cardinal' :: forall e d c b a. Semigroupoid b => b d c -> (b e c -> a) -> b e d -> a
C' combinator - cardinal prime
S(BBS)(KK)
Λ a b c d (c → a → d) → (b → c) → a → b → d
λ f g x y . f (g y) x
#cardinalstar Source
cardinalstar :: forall d c b a. Semigroupoid a => a d c -> a c b -> a d b
C* combinator - cardinal once removed
BC
Λ a b c d . (a → c → b → d) → a → b → c → d
λ f x y z . f x z y
#cardinalstarstar Source
cardinalstarstar :: forall e d c b a. Semigroupoid b => ((b e d -> b e c) -> a) -> b d c -> a
C** combinator - cardinal twice removed
BC*
Λ a b c d e . (a → b → d → c → e) → a → b → c → d → e
λ f s t u v . f s t v u
#cd Source
cd :: forall d c b a p. Semigroupoid p => p a b -> (d -> p c a) -> (d -> p c b)
compose2
#cdc Source
cdc :: forall e d c b a p. Semigroupoid p => p a b -> (c -> d -> p e a) -> (c -> d -> p e b)
compose3
#cdd Source
cdd :: forall f e d c b a p. Semigroupoid p => p e f -> (a -> b -> c -> p d e) -> (a -> b -> c -> p d f)
compose4
#cddc Source
cddc :: forall g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> p g a) -> (c -> d -> e -> f -> p g b)
compose5
#cddd Source
cddd :: forall h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> p h a) -> (c -> d -> e -> f -> g -> p h b)
compose6
#cdddc Source
cdddc :: forall i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> p i a) -> (c -> d -> e -> f -> g -> h -> p i b)
compose7
#cdddd Source
cdddd :: forall j i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> p j a) -> (c -> d -> e -> f -> g -> h -> i -> p j b)
compose8
#cddddc Source
cddddc :: forall k j i h g f e d c b a p. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> j -> p k a) -> (c -> d -> e -> f -> g -> h -> i -> j -> p k b)
compose9
#dickcissel Source
dickcissel :: forall e d c b a. Semigroupoid b => b d c -> (a -> b e d) -> a -> b e c
D1 combinator - dickcissel
B(BB)
Λ a b c d e . (a → b → d → e) → a → b → (c → d) → c → e
λ f x y g z . f x y (g z)
#dove Source
dove :: forall e d c b a. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c
D combinator - dove
BB
Λ a b c d . (a → c → d) → a → (b → c) → b → d
λ f x g y . f x (g y)
#dovekie Source
dovekie :: forall f e d c b a. Semigroupoid c => c e d -> (a -> b -> c f e) -> a -> b -> c f d
D2 combinator - dovekie
BB(BB)
Λ a b c d e . (c → d → e) → (a → c) → a → (b → d) → b → e
λ f g x h z . f (g x) (h z)
#eagle Source
eagle :: forall f e d c b a. Semigroupoid c => (a -> b -> c e d) -> a -> b -> c f e -> c f d
E combinator - eagle
B(BBB)
Λ a b c d e . (a → d → e) → a → (b → c → d) → b → c → e
λ f x g y z . f x (g y z)
#finch Source
finch :: forall c b a. a -> (c -> a -> b) -> c -> b
F combinator - finch
ETTET
Λ a b c . a → b → (b → a → c) → c
λ x y f . f y x
#finchstar Source
finchstar :: forall f d e c b a. Semigroupoid e => (f -> (e b a -> e c a) -> d) -> e c b -> f -> d
F* combinator - finch once removed
BCR
Λ a b c d . (c → b → a → d) → a → b → c → d
λ f x y z . f z y x
#fix Source
fix :: forall a. (a -> a) -> a
Fixed point Y combinator
Λ a . (a → a) → a
λ f . (λ x. f (x x)) (λ x . f (x x))
#goldfinch Source
goldfinch :: forall d c b a. (b -> c -> d) -> (a -> c) -> a -> b -> d
G combinator - goldfinch
BBC
Λ a b c d . (b → c → d) → (a → c) → a → b → d
λ f g x y . f y (g x)
#hummingbird Source
hummingbird :: forall m b a. Bind m => m a -> (a -> m b) -> m b
H combinator - hummingbird
BW(BC)
Λ a b c (a → b → a → c) → a → b → c
λ f x y . f x y x
#idstar Source
idstar :: forall b a. (a -> b) -> a -> b
I* combinator - id bird once removed
S(SK)
Λ a b . (a → b) → a → b
λ f x . f x
#idstarstar Source
idstarstar :: forall c b a. (a -> b -> c) -> a -> b -> c
I** combinator - id bird twice removed
Λ a b c . (a → b → c) → a → b → c
λ f x y . f x y
#jalt Source
jalt :: forall e d c b a. Semigroupoid b => a -> b d c -> b e d -> b e c
Alternative J combinator - Joy
Λ a b c . (a → c) → a → b → c
λf x y . f x
#jalt' Source
jalt' :: forall f e d c b a. Semigroupoid e => a -> (f -> e c d) -> f -> e b c -> e b d
J' combinator - Joy prime
Λ a b c d . (a → b → d) → a → b → c → d
λ f x y z . f x y
#jay Source
jay :: forall b a. (a -> b -> b) -> a -> b -> a -> b
J combinator - Jay
B(BC)(W(BC(B(BBB))))
Λ a b c d . (a → b → b) → a → b → a → b
λ f x y z . f x (f z y)
#on Source
on :: forall c b a. (b -> b -> c) -> (a -> b) -> a -> a -> c
Psi combinator - psi bird - on
Λ a b . (b → b → c) → (a → b) → a → a → c
λ f g . λ x y . f (g x) (g y)
#owl Source
owl :: forall e d c b a. Semigroupoid c => (b -> c e d) -> b -> c a e -> c a d
O combinator - owl
SI
Λ a b . ((a → b) → a) → (a → b) → b
λ x y . y (x y)
#quacky Source
quacky :: forall c b a. c -> (c -> a) -> (a -> b) -> b
Q4 combinator - quacky bird
F*B
Λ a b c . a → (a → b) → (b → c) → c
λ x f g . g (f x)
#queer Source
queer :: forall d c b a. Semigroupoid a => a b c -> a c d -> a b d
Q combinator - queer bird
CB
Λ a b c . (a → b) → (b → c) → a → c
λ f g x . g (f x)
#quirky Source
quirky :: forall c b a. (a -> b) -> a -> (b -> c) -> c
Q3 combinator - quircky bird
BT
Λ a b c . (a → b) → a → (b → c) → c
λ f x g . g (f x)
#quixotic Source
quixotic :: forall c b a. (b -> c) -> a -> (a -> b) -> c
Q1 combinator - quixotic bird
BCB
Λ a b c . (b → c) → a → (a → b) → c
λ f x g . f (g x)
#quizzical Source
quizzical :: forall c b a. a -> (b -> c) -> (a -> b) -> c
Q2 combinator - quizzical bird
C(BCB)
Λ a b c . a → (b → c) → (a → b) → c
λ x f g . f (g x)
#robin Source
robin :: forall c b a. a -> (b -> a -> c) -> b -> c
R combinator - robin
BBT
Λ a b c . a → (b → a → c) → b → c
λ x f y . f y x
#robinstar Source
robinstar :: forall d c b a. (b -> c -> a -> d) -> a -> b -> c -> d
R* combinator - robin once removed
CC
Λ a b c d . (b → c → a → d) → a → b → c → d
λ f x y z . f y z x
#robinstarstar Source
robinstarstar :: forall e d c b a. (a -> c -> d -> b -> e) -> a -> b -> c -> d -> e
R** combinator - robin twice removed
BR*
Λ a b c d e . (a → c → d → b → e) → a → b → c → d → e
λ f s t u v . f s u v t
#t Source
t :: forall b a. a -> (a -> b) -> b
Reverse application which is
probably exist inside Lens
module
#thrush Source
thrush :: forall b a. a -> (a -> b) -> b
T combinator - thrush
CI
Λ a b . a → (a → b) → b
λ x f . f x
#vireo Source
vireo :: forall c b a. c -> b -> (c -> b -> a) -> a
V combinator - vireo
BCT
Λ a b c . a → b → (a → b → c) → c
λ x y f . f x y
#vireostar Source
vireostar :: forall c b a. (a -> b -> c) -> b -> a -> c
V* combinator - vireo once removed
CF
Λ a b c d . (b → a → b → d) → a → b → b → d
λ f x y z . f y x z
#vireostarstar Source
vireostarstar :: forall d c b a. (a -> c -> b -> c -> d) -> a -> b -> c -> c -> d
V** combinator - vireo twice removed
BV*
Λ a b c d e . (a → c → b → c → e) → a → b → c → c → e
λ f s t u v . f s v t u
#warblerstar Source
warblerstar :: forall c b a. (a -> b -> b -> c) -> a -> b -> c
W* combinator - warbler once removed
BW
Λ a b c . (a → b → b → c) → a → b → c
λ f x y . f x y y
#warblerstarstar Source
warblerstarstar :: forall d c b a. (a -> b -> c -> c -> d) -> a -> b -> c -> d
W** combinator - warbler twice removed
BV*
Λ a b c d . (a → b → c → c → d) → a → b → c → d
λ f x y z . f x y z z
- Modules
- Aviary.
Birds