Module

Aviary.Birds

Package
purescript-birds
Repository
awkure/purescript-birds

#applicator Source

applicator :: forall a b. (a -> b) -> a -> b

A combinator - applicator

Λ a b . (a → b) → a → b

λ f x . f x

#baldeagle Source

baldeagle :: forall a b c d e f g. Semigroupoid d => d g c -> (f -> d b g) -> f -> (e -> d a b) -> e -> d a c

Ê combinator - bald eagle

B(BBB)(B(BBB))

Λ a b c d e f g . (e → f → g) → (a → b → e) → a → b → (c → d → f) → c → d → g

λ f g s t h u v . f (g s t) (h u v)

#becard Source

becard :: forall a b c d. (c -> d) -> (b -> c) -> (a -> b) -> a -> d

B3 combinator - becard

B(BB)B

Λ a b c d . (c → d) → (b → c) → (a → b) → a → d

λ f g h x . f (g (h x))

#blackbird Source

blackbird :: forall a b c d e. Semigroupoid e => e b a -> (d -> e c b) -> d -> e c a

B1 combinator - blackbird

BBB

Λ a b c d . (c → d) → (a → b → c) → a → b → d

λ f g x y . f (g x y)

#bluebird Source

bluebird :: forall a b c d. Semigroupoid a => a c d -> a b c -> a b d

B combinator - bluebird

S(KS)K

Λ a b c . (b → c) → (a → b) → a → c

λ g f x . g (f x)

#bluebird' Source

bluebird' :: forall a b c d e. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c

B' combinator - bluebird prime

BB

Λ a b c d . (a → c → d) → a → (b → c) → b → d

λ f x g y . f x (g y)

#bunting Source

bunting :: forall a b c d e f. Semigroupoid b => b d c -> (f -> a -> b e d) -> f -> a -> b e c

B2 combinator - bunting

B(BBB)B

Λ a b c d e . (d → e) → (a → b → c → d) → a → b → c → e

λ f g x y z . f (g x y z)

#cardinal Source

cardinal :: forall a b c. (a -> b -> c) -> b -> a -> c

C combinator - cardinal

S(BBS)(KK)

Λ a b c . (a → b → c) → b → a → c

λ f x y . f y x

#cardinal' Source

cardinal' :: forall a b c d e. Semigroupoid b => b d c -> (b e c -> a) -> b e d -> a

C' combinator - cardinal prime

S(BBS)(KK)

Λ a b c d (c → a → d) → (b → c) → a → b → d

λ f g x y . f (g y) x

#cardinalstar Source

cardinalstar :: forall a b c d. Semigroupoid a => a d c -> a c b -> a d b

C* combinator - cardinal once removed

BC

Λ a b c d . (a → c → b → d) → a → b → c → d

λ f x y z . f x z y

#cardinalstarstar Source

cardinalstarstar :: forall a b c d e. Semigroupoid b => ((b e d -> b e c) -> a) -> b d c -> a

C** combinator - cardinal twice removed

BC*

Λ a b c d e . (a → b → d → c → e) → a → b → c → d → e

λ f s t u v . f s t v u

#cd Source

cd :: forall p a b c d. Semigroupoid p => p a b -> (d -> p c a) -> (d -> p c b)

compose2

#cdc Source

cdc :: forall p a b c d e. Semigroupoid p => p a b -> (c -> d -> p e a) -> (c -> d -> p e b)

compose3

#cdd Source

cdd :: forall p a b c d e f. Semigroupoid p => p e f -> (a -> b -> c -> p d e) -> (a -> b -> c -> p d f)

compose4

#cddc Source

cddc :: forall p a b c d e f g. Semigroupoid p => p a b -> (c -> d -> e -> f -> p g a) -> (c -> d -> e -> f -> p g b)

compose5

#cddd Source

cddd :: forall p a b c d e f g h. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> p h a) -> (c -> d -> e -> f -> g -> p h b)

compose6

#cdddc Source

cdddc :: forall p a b c d e f g h i. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> p i a) -> (c -> d -> e -> f -> g -> h -> p i b)

compose7

#cdddd Source

cdddd :: forall p a b c d e f g h i j. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> p j a) -> (c -> d -> e -> f -> g -> h -> i -> p j b)

compose8

#cddddc Source

cddddc :: forall p a b c d e f g h i j k. Semigroupoid p => p a b -> (c -> d -> e -> f -> g -> h -> i -> j -> p k a) -> (c -> d -> e -> f -> g -> h -> i -> j -> p k b)

compose9

#dickcissel Source

dickcissel :: forall a b c d e. Semigroupoid b => b d c -> (a -> b e d) -> a -> b e c

D1 combinator - dickcissel

B(BB)

Λ a b c d e . (a → b → d → e) → a → b → (c → d) → c → e

λ f x y g z . f x y (g z)

#dove Source

dove :: forall a b c d e. Semigroupoid b => (a -> b d c) -> a -> b e d -> b e c

D combinator - dove

BB

Λ a b c d . (a → c → d) → a → (b → c) → b → d

λ f x g y . f x (g y)

#dovekie Source

dovekie :: forall a b c d e f. Semigroupoid c => c e d -> (a -> b -> c f e) -> a -> b -> c f d

D2 combinator - dovekie

BB(BB)

Λ a b c d e . (c → d → e) → (a → c) → a → (b → d) → b → e

λ f g x h z . f (g x) (h z)

#eagle Source

eagle :: forall a b c d e f. Semigroupoid c => (a -> b -> c e d) -> a -> b -> c f e -> c f d

E combinator - eagle

B(BBB)

Λ a b c d e . (a → d → e) → a → (b → c → d) → b → c → e

λ f x g y z . f x (g y z)

#finch Source

finch :: forall a b c. a -> (c -> a -> b) -> c -> b

F combinator - finch

ETTET

Λ a b c . a → b → (b → a → c) → c

λ x y f . f y x

#finchstar Source

finchstar :: forall a b c e d f. Semigroupoid e => (f -> (e b a -> e c a) -> d) -> e c b -> f -> d

F* combinator - finch once removed

BCR

Λ a b c d . (c → b → a → d) → a → b → c → d

λ f x y z . f z y x

#fix Source

fix :: forall a. (a -> a) -> a

Fixed point Y combinator

Λ a . (a → a) → a

λ f . (λ x. f (x x)) (λ x . f (x x))

#goldfinch Source

goldfinch :: forall a b c d. (b -> c -> d) -> (a -> c) -> a -> b -> d

G combinator - goldfinch

BBC

Λ a b c d . (b → c → d) → (a → c) → a → b → d

λ f g x y . f y (g x)

#hummingbird Source

hummingbird :: forall a b m. Bind m => m a -> (a -> m b) -> m b

H combinator - hummingbird

BW(BC)

Λ a b c (a → b → a → c) → a → b → c

λ f x y . f x y x

#idiot Source

idiot :: forall t a. Category a => a t t

I combinator - identity bird

SKK

Λ a . a → a

λ x . x

#idstar Source

idstar :: forall a b. (a -> b) -> a -> b

I* combinator - id bird once removed

S(SK)

Λ a b . (a → b) → a → b

λ f x . f x

#idstarstar Source

idstarstar :: forall a b c. (a -> b -> c) -> a -> b -> c

I** combinator - id bird twice removed

Λ a b c . (a → b → c) → a → b → c

λ f x y . f x y

#jalt Source

jalt :: forall a b c d e. Semigroupoid b => a -> b d c -> b e d -> b e c

Alternative J combinator - Joy

Λ a b c . (a → c) → a → b → c

λf x y . f x

#jalt' Source

jalt' :: forall a b c d e f. Semigroupoid e => a -> (f -> e c d) -> f -> e b c -> e b d

J' combinator - Joy prime

Λ a b c d . (a → b → d) → a → b → c → d

λ f x y z . f x y

#jay Source

jay :: forall a b. (a -> b -> b) -> a -> b -> a -> b

J combinator - Jay

B(BC)(W(BC(B(BBB))))

Λ a b c d . (a → b → b) → a → b → a → b

λ f x y z . f x (f z y)

#kestrel Source

kestrel :: forall a b. a -> b -> a

K combinator - kestrel

K

Λ a b . a → b → a

λ x y . x

#kite Source

kite :: forall a b c. Category b => a -> b c c

Ki combinator - kite (false)

KI

Λ a b . a → b → b

λ x y . y

#on Source

on :: forall a b c. (b -> b -> c) -> (a -> b) -> a -> a -> c

Psi combinator - psi bird - on

Λ a b . (b → b → c) → (a → b) → a → a → c

λ f g . λ x y . f (g x) (g y)

#owl Source

owl :: forall a b c d e. Semigroupoid c => (b -> c e d) -> b -> c a e -> c a d

O combinator - owl

SI

Λ a b . ((a → b) → a) → (a → b) → b

λ x y . y (x y)

#phoenix Source

phoenix :: forall a b c f. Apply f => (a -> b -> c) -> f a -> f b -> f c

Φ combinator - phoenix

Λ a b c d . (b → c → d) → (a → b) → (a → c) → a → d

λ f g h x . f (g x) (h x)

#quacky Source

quacky :: forall a b c. c -> (c -> a) -> (a -> b) -> b

Q4 combinator - quacky bird

F*B

Λ a b c . a → (a → b) → (b → c) → c

λ x f g . g (f x)

#queer Source

queer :: forall a b c d. Semigroupoid a => a b c -> a c d -> a b d

Q combinator - queer bird

CB

Λ a b c . (a → b) → (b → c) → a → c

λ f g x . g (f x)

#quirky Source

quirky :: forall a b c. (a -> b) -> a -> (b -> c) -> c

Q3 combinator - quircky bird

BT

Λ a b c . (a → b) → a → (b → c) → c

λ f x g . g (f x)

#quixotic Source

quixotic :: forall a b c. (b -> c) -> a -> (a -> b) -> c

Q1 combinator - quixotic bird

BCB

Λ a b c . (b → c) → a → (a → b) → c

λ f x g . f (g x)

#quizzical Source

quizzical :: forall a b c. a -> (b -> c) -> (a -> b) -> c

Q2 combinator - quizzical bird

C(BCB)

Λ a b c . a → (b → c) → (a → b) → c

λ x f g . f (g x)

#robin Source

robin :: forall a b c. a -> (b -> a -> c) -> b -> c

R combinator - robin

BBT

Λ a b c . a → (b → a → c) → b → c

λ x f y . f y x

#robinstar Source

robinstar :: forall a b c d. (b -> c -> a -> d) -> a -> b -> c -> d

R* combinator - robin once removed

CC

Λ a b c d . (b → c → a → d) → a → b → c → d

λ f x y z . f y z x

#robinstarstar Source

robinstarstar :: forall a b c d e. (a -> c -> d -> b -> e) -> a -> b -> c -> d -> e

R** combinator - robin twice removed

BR*

Λ a b c d e . (a → c → d → b → e) → a → b → c → d → e

λ f s t u v . f s u v t

#starling Source

starling :: forall m a b. Monad m => m (a -> b) -> m a -> m b

S combinator - starling

S

Λ a b c . (a → b → c) → (a → b) → a → c

λ f g x . f x (g x)

#starling' Source

starling' :: forall a b c f. Apply f => (a -> b -> c) -> f a -> f b -> f c

S' combinator - starling prime

Λ a b c d . (b → c → d) → (a → b) → (a → c) → a → d

λ f g h x . f (g x) (h x)

#t Source

t :: forall a b. a -> (a -> b) -> b

Reverse application which is probably exist inside Lens module

#thrush Source

thrush :: forall a b. a -> (a -> b) -> b

T combinator - thrush

CI

Λ a b . a → (a → b) → b

λ x f . f x

#vireo Source

vireo :: forall a b c. c -> b -> (c -> b -> a) -> a

V combinator - vireo

BCT

Λ a b c . a → b → (a → b → c) → c

λ x y f . f x y

#vireostar Source

vireostar :: forall a b c. (a -> b -> c) -> b -> a -> c

V* combinator - vireo once removed

CF

Λ a b c d . (b → a → b → d) → a → b → b → d

λ f x y z . f y x z

#vireostarstar Source

vireostarstar :: forall a b c d. (a -> c -> b -> c -> d) -> a -> b -> c -> c -> d

V** combinator - vireo twice removed

BV*

Λ a b c d e . (a → c → b → c → e) → a → b → c → c → e

λ f s t u v . f s v t u

#warbler Source

warbler :: forall a m. Bind m => m (m a) -> m a

W combinator - warbler - omega

MM

Λ a b . (a → a → b) → a → b

λ f x . f x x

#warblerstar Source

warblerstar :: forall a b c. (a -> b -> b -> c) -> a -> b -> c

W* combinator - warbler once removed

BW

Λ a b c . (a → b → b → c) → a → b → c

λ f x y . f x y y

#warblerstarstar Source

warblerstarstar :: forall a b c d. (a -> b -> c -> c -> d) -> a -> b -> c -> d

W** combinator - warbler twice removed

BV*

Λ a b c d . (a → b → c → c → d) → a → b → c → d

λ f x y z . f x y z z

#worbler Source

worbler :: forall a b. b -> (b -> b -> a) -> a

W1 combinator - converse warbler

CW

Λ a b . a → (a → a → b) → b

λ x f = f x x

#(&) Source

Operator alias for Aviary.Birds.t (left-associative / precedence 1)

#(.$.) Source

Operator alias for Aviary.Birds.owl (right-associative / precedence 8)

#(...) Source

Operator alias for Aviary.Birds.blackbird (right-associative / precedence 9)

#(.:) Source

Operator alias for Aviary.Birds.cd (right-associative / precedence 8)

#(.:.) Source

Operator alias for Aviary.Birds.cdc (right-associative / precedence 8)

#(.::) Source

Operator alias for Aviary.Birds.cdd (right-associative / precedence 8)

#(.::.) Source

Operator alias for Aviary.Birds.cddc (right-associative / precedence 8)

#(.:::) Source

Operator alias for Aviary.Birds.cddd (right-associative / precedence 8)

#(.:::.) Source

Operator alias for Aviary.Birds.cdddc (right-associative / precedence 8)

#(.::::) Source

Operator alias for Aviary.Birds.cdddd (right-associative / precedence 8)

#(.::::.) Source

Operator alias for Aviary.Birds.cddddc (right-associative / precedence 8)

#(<...<) Source

Operator alias for Aviary.Birds.dickcissel (right-associative / precedence 9)

#(<..<) Source

Operator alias for Aviary.Birds.dove (right-associative / precedence 9)

#(<.<.<) Source

Operator alias for Aviary.Birds.bunting (right-associative / precedence 9)

#(>..) Source

Operator alias for Aviary.Birds.cardinal' (right-associative / precedence 9)

#(>..<) Source

Operator alias for Aviary.Birds.cardinalstarstar (right-associative / precedence 9)

Modules
Aviary.Birds