Module
Control.Algebra.Properties  
- Package
 - purescript-colehaus-properties
 - Repository
 - colehaus/purescript-properties
 
#absorbtion Source
absorbtion :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> Boolean#leftAlternativeIdentity Source
leftAlternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#rightAlternativeIdentity Source
rightAlternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#alternativeIdentity Source
alternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#anticommutative Source
anticommutative :: forall b a. Eq b => (a -> a -> b) -> a -> a -> Boolean#antireflexive Source
antireflexive :: forall b a. HeytingAlgebra b => Eq b => (a -> a -> b) -> a -> b#antitransitive Source
antitransitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b#associative Source
associative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean#leftCancellative Source
leftCancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean#rightCancellative Source
rightCancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean#cancellative Source
cancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean#commutative Source
commutative :: forall b a. Eq b => (a -> a -> b) -> a -> a -> Boolean#elasticIdentity Source
elasticIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#leftDistributive Source
leftDistributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean#rightDistributive Source
rightDistributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean#distributive Source
distributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean#falsehoodPreserving Source
falsehoodPreserving :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a#flexibleIdentity Source
flexibleIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#idempotent Source
idempotent :: forall a. Eq a => (a -> a) -> a -> Boolean#idempotent' Source
idempotent' :: forall a. Eq a => (a -> a -> a) -> a -> Boolean#intransitive Source
intransitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b#involution Source
involution :: forall a. Eq a => (a -> a) -> a -> Boolean#jacobiIdentity Source
jacobiIdentity :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> a -> Boolean#jordanIdentity Source
jordanIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean#monotonic Source
monotonic :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a -> a#powerAssociative Source
powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> BooleanA magma M is power-associative if the subalgebra generated by any element is associative.
∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x
#reflexive Source
reflexive :: forall b a. HeytingAlgebra b => Eq b => (a -> a -> b) -> a -> b#leftSemimedial Source
leftSemimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean#rightSemimedial Source
rightSemimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean#semimedial Source
semimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean#transitive Source
transitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b#truthPreserving Source
truthPreserving :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a#zeropotent Source
zeropotent :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean- Modules
 - Control.
Algebra. Properties