Module
Data.Operator.PartialOrd
- Package
- purescript-higher-order
- Repository
- matthew-hilty/purescript-higher-order
#PartialOrd1 Source
class PartialOrd1 f whereThe PartialOrd1 typeclass represents type constructors f that have
an asociated partial ordering of values of type f a independent of any
choice of a.
PartialOrd1 instances should satisfy the laws of partial orderings:
- Reflexivity:
a .<=? a == Just true - Antisymmetry:
if
a .<=? b == Just trueandb .<=? a == Just truethena .== b - Transitivity:
if
a .<=? b == Just trueandb .<=? c == Just truethena .<=? c == Just true
That is, partial orderings should satisfy all the laws of total orderings
- Reflexivity:
a .<= a - Antisymmetry: if
a .<= bandb .<= athena .== b - Transitivity: if
a .<= bandb .<= cthena .<= c
... EXCEPT the law of connexity, which follows:
- Connexity:
a .<= borb .<= a
Members
Instances
(Ord1 f) => PartialOrd1 f
#pClamp1 Source
pClamp1 :: forall f a. PartialOrd1 f => f a -> f a -> f a -> Maybe (f a)#pComparing1 Source
pComparing1 :: forall f b a. PartialOrd1 f => (a -> f b) -> a -> a -> Maybe Ordering#pGreaterThan1 Source
pGreaterThan1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe Boolean#(.>?) Source
Operator alias for Data.Operator.PartialOrd.pGreaterThan1 (left-associative / precedence 4)
#pGreaterThanOrEq1 Source
pGreaterThanOrEq1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe Boolean#(.>=?) Source
Operator alias for Data.Operator.PartialOrd.pGreaterThanOrEq1 (left-associative / precedence 4)
#pLessThan1 Source
pLessThan1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe Boolean#(.<?) Source
Operator alias for Data.Operator.PartialOrd.pLessThan1 (left-associative / precedence 4)
#pLessThanOrEq1 Source
pLessThanOrEq1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe Boolean#(.<=?) Source
Operator alias for Data.Operator.PartialOrd.pLessThanOrEq1 (left-associative / precedence 4)
#pMax1 Source
pMax1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe (f a)#pMin1 Source
pMin1 :: forall f a. PartialOrd1 f => f a -> f a -> Maybe (f a)