Data.EuclideanRing
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#EuclideanRing Source
class (CommutativeRing a) <= EuclideanRing a where
The EuclideanRing
class is for commutative rings that support division.
The mathematical structure this class is based on is sometimes also called
a Euclidean domain.
Instances must satisfy the following laws in addition to the Ring
laws:
- Integral domain:
one /= zero
, and ifa
andb
are both nonzero then so is their producta * b
- Euclidean function
degree
:- Nonnegativity: For all nonzero
a
,degree a >= 0
- Quotient/remainder: For all
a
andb
, whereb
is nonzero, letq = a / b
andr = a `mod` b
; thena = q*b + r
, and also eitherr = zero
ordegree r < degree b
- Nonnegativity: For all nonzero
- Submultiplicative euclidean function:
- For all nonzero
a
andb
,degree a <= degree (a * b)
- For all nonzero
The behaviour of division by zero
is unconstrained by these laws,
meaning that individual instances are free to choose how to behave in this
case. Similarly, there are no restrictions on what the result of
degree zero
is; it doesn't make sense to ask for degree zero
in the
same way that it doesn't make sense to divide by zero
, so again,
individual instances may choose how to handle this case.
For any EuclideanRing
which is also a Field
, one valid choice
for degree
is simply const 1
. In fact, unless there's a specific
reason not to, Field
types should normally use this definition of
degree
.
The Unit
instance is provided for backwards compatibility, but it is
not law-abiding, because Unit
fails to form an integral domain. This
instance will be removed in a future release.
Members
Instances
#gcd Source
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a
The greatest common divisor of two values.
#lcm Source
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a
The least common multiple of two values.
Re-exports from Data.CommutativeRing
#CommutativeRing Source
class (Ring a) <= CommutativeRing a
The CommutativeRing
class is for rings where multiplication is
commutative.
Instances must satisfy the following law in addition to the Ring
laws:
- Commutative multiplication:
a * b = b * a
Instances
Re-exports from Data.Ring
#Ring Source
Re-exports from Data.Semiring
#Semiring Source
class Semiring a where
The Semiring
class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c)
- Identity:
zero + a = a + zero = a
- Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c)
- Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c)
- Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number
and Int
types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number
, the presence of NaN
and
Infinity
values. The behaviour is unspecified in these cases.
Members
Instances
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
CommutativeRing - Data.
Eq - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
HeytingAlgebra - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Unsafe - Data.
Ordering - Data.
Ring - Data.
Semigroup - Data.
Semiring - Data.
Show - Data.
Unit - Data.
Void - Prelude