Module
Control.Algebra.Properties
- Package
- purescript-properties
- Repository
- Risto-Stevcev/purescript-properties
#absorbtion Source
absorbtion :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> Boolean
#leftAlternativeIdentity Source
leftAlternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#rightAlternativeIdentity Source
rightAlternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#alternativeIdentity Source
alternativeIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#anticommutative Source
anticommutative :: forall b a. Eq b => (a -> a -> b) -> a -> a -> Boolean
#antireflexive Source
antireflexive :: forall b a. HeytingAlgebra b => Eq b => (a -> a -> b) -> a -> b
#antitransitive Source
antitransitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b
#associative Source
associative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean
#leftCancellative Source
leftCancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean
#rightCancellative Source
rightCancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean
#cancellative Source
cancellative :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> Boolean
#commutative Source
commutative :: forall b a. Eq b => (a -> a -> b) -> a -> a -> Boolean
#elasticIdentity Source
elasticIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#leftDistributive Source
leftDistributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean
#rightDistributive Source
rightDistributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean
#distributive Source
distributive :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Boolean
#falsehoodPreserving Source
falsehoodPreserving :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a
#flexibleIdentity Source
flexibleIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#idempotent Source
idempotent :: forall a. Eq a => (a -> a) -> a -> Boolean
#idempotent' Source
idempotent' :: forall a. Eq a => (a -> a -> a) -> a -> Boolean
#intransitive Source
intransitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b
#involution Source
involution :: forall a. Eq a => (a -> a) -> a -> Boolean
#jacobiIdentity Source
jacobiIdentity :: forall a. Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> a -> Boolean
#jordanIdentity Source
jordanIdentity :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
#monotonic Source
monotonic :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a -> a
#powerAssociative Source
powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> Boolean
A magma M is power-associative if the subalgebra generated by any element is associative.
∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x
#reflexive Source
reflexive :: forall b a. HeytingAlgebra b => Eq b => (a -> a -> b) -> a -> b
#leftSemimedial Source
leftSemimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean
#rightSemimedial Source
rightSemimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean
#semimedial Source
semimedial :: forall a. Eq a => (a -> a -> a) -> a -> a -> a -> a -> Boolean
#transitive Source
transitive :: forall b a. HeytingAlgebra b => (a -> a -> b) -> a -> a -> a -> b
#truthPreserving Source
truthPreserving :: forall a. HeytingAlgebra a => Eq a => (a -> a -> a) -> a -> a -> a
#zeropotent Source
zeropotent :: forall a. Eq a => (a -> a -> a) -> a -> a -> Boolean
- Modules
- Control.
Algebra. Properties