Module
Type.Data.Peano.Int.Definition    
- Package
- purescript-typelevel-peano
- Repository
- csicar/purescript-typelevel-peano
#Pos Source
data Pos :: Nat -> IntRepresents a posivite number
Pos (Succ Z) ^= + 1
Instances
- (IsNat n) => IsInt (Pos n)
- (SumInt (Pos a) (Pos b) (Pos c')) => SumInt (Pos (Succ a)) (Pos b) (Pos (Succ c'))
- (SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c
- (SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) c
- SumInt (Pos Z) (Pos b) (Pos b)
- SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))
- SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))
- SumInt (Pos a) (Neg Z) (Pos a)
- SumInt (Neg Z) (Pos a) (Pos a)
- Inverse (Pos Z) (Pos Z)
- Inverse (Pos a) (Neg a)
- Inverse (Neg Z) (Pos Z)
- Inverse (Neg a) (Pos a)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)
- ProductInt (Pos Z) a (Pos Z)
- ProductInt (Pos (Succ Z)) a a
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)
- (ProductInt (Pos a) b ab, SumInt ab b result) => ProductInt (Pos (Succ a)) b result
- (IsZeroNat a isZero) => IsZeroInt (Pos a) isZero
#Neg Source
data Neg :: Nat -> IntRepresents a negative number
Neg (Succ Z) ^= - 1
Instances
- (IsNat n) => IsInt (Neg n)
- (SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c
- (SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) c
- (SumInt (Neg a) (Neg b) (Neg c')) => SumInt (Neg (Succ a)) (Neg b) (Neg (Succ c'))
- SumInt (Neg Z) (Neg b) (Neg b)
- SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))
- SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))
- SumInt (Pos a) (Neg Z) (Pos a)
- SumInt (Neg Z) (Pos a) (Pos a)
- Inverse (Pos a) (Neg a)
- Inverse (Neg Z) (Pos Z)
- Inverse (Neg a) (Pos a)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)
- (IsZeroNat a isZero) => IsZeroInt (Neg a) isZero
#SumInt Source
class SumInt (a :: Int) (b :: Int) (c :: Int) | a b -> cInstances
- (SumInt (Pos a) (Pos b) (Pos c')) => SumInt (Pos (Succ a)) (Pos b) (Pos (Succ c'))
- (SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c
- (SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) c
- (SumInt (Neg a) (Neg b) (Neg c')) => SumInt (Neg (Succ a)) (Neg b) (Neg (Succ c'))
- SumInt (Pos Z) (Pos b) (Pos b)
- SumInt (Neg Z) (Neg b) (Neg b)
- SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))
- SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))
- SumInt (Pos a) (Neg Z) (Pos a)
- SumInt (Neg Z) (Pos a) (Pos a)
#ProductInt Source
class ProductInt (a :: Int) (b :: Int) (c :: Int) | a b -> cInstances
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)
- ProductInt (Pos Z) a (Pos Z)
- ProductInt (Pos (Succ Z)) a a
- (ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)
- (ProductInt (Pos a) b ab, SumInt ab b result) => ProductInt (Pos (Succ a)) b result
reflect a type-level Int to a value-level Int