Module
Type.Data.Peano
- Package
- purescript-typelevel-peano
- Repository
- csicar/purescript-typelevel-peano
Re-exports from Type.Data.Peano.Int
#Pos Source
data Pos :: Nat -> IntRepresents a posivite number
Pos (Succ Z) ^= + 1
Instances
(IsNat n) => IsInt (Pos n)(SumInt (Pos a) (Pos b) (Pos c')) => SumInt (Pos (Succ a)) (Pos b) (Pos (Succ c'))(SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c(SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) cSumInt (Pos Z) (Pos b) (Pos b)SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))SumInt (Pos a) (Neg Z) (Pos a)SumInt (Neg Z) (Pos a) (Pos a)Inverse (Pos Z) (Pos Z)Inverse (Pos a) (Neg a)Inverse (Neg Z) (Pos Z)Inverse (Neg a) (Pos a)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)ProductInt (Pos Z) a (Pos Z)ProductInt (Pos (Succ Z)) a a(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)(ProductInt (Pos a) b ab, SumInt ab b result) => ProductInt (Pos (Succ a)) b result(IsZeroNat a isZero) => IsZeroInt (Pos a) isZero
#Neg Source
data Neg :: Nat -> IntRepresents a negative number
Neg (Succ Z) ^= - 1
Instances
(IsNat n) => IsInt (Neg n)(SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c(SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) c(SumInt (Neg a) (Neg b) (Neg c')) => SumInt (Neg (Succ a)) (Neg b) (Neg (Succ c'))SumInt (Neg Z) (Neg b) (Neg b)SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))SumInt (Pos a) (Neg Z) (Pos a)SumInt (Neg Z) (Pos a) (Pos a)Inverse (Pos a) (Neg a)Inverse (Neg Z) (Pos Z)Inverse (Neg a) (Pos a)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)(IsZeroNat a isZero) => IsZeroInt (Neg a) isZero
#ParseInt Source
#ProductInt Source
class ProductInt (a :: Int) (b :: Int) (c :: Int) | a b -> cInstances
(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Pos b) (Neg c)(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Neg a) (Neg b) (Pos c)ProductInt (Pos Z) a (Pos Z)ProductInt (Pos (Succ Z)) a a(ProductInt (Pos a) (Pos b) (Pos c)) => ProductInt (Pos a) (Neg b) (Neg c)(ProductInt (Pos a) b ab, SumInt ab b result) => ProductInt (Pos (Succ a)) b result
#SumInt Source
class SumInt (a :: Int) (b :: Int) (c :: Int) | a b -> cInstances
(SumInt (Pos a) (Pos b) (Pos c')) => SumInt (Pos (Succ a)) (Pos b) (Pos (Succ c'))(SumInt (Pos a) (Neg b) c) => SumInt (Pos (Succ a)) (Neg (Succ b)) c(SumInt (Neg a) (Pos b) c) => SumInt (Neg (Succ a)) (Pos (Succ b)) c(SumInt (Neg a) (Neg b) (Neg c')) => SumInt (Neg (Succ a)) (Neg b) (Neg (Succ c'))SumInt (Pos Z) (Pos b) (Pos b)SumInt (Neg Z) (Neg b) (Neg b)SumInt (Neg (Succ a)) (Pos Z) (Neg (Succ a))SumInt (Pos Z) (Neg (Succ b)) (Neg (Succ b))SumInt (Pos a) (Neg Z) (Pos a)SumInt (Neg Z) (Pos a) (Pos a)
#prod Source
prod :: forall proxy a b c. ProductInt a b c => proxy a -> proxy b -> proxy cRe-exports from Type.Data.Peano.Nat
#Succ Source
data Succ :: Nat -> NatRepresents Successor of a Nat: (Succ a) ^= 1 + a
Instances
(IsNat a) => IsNat (Succ a)(SumNat a b c) => SumNat (Succ a) b (Succ c)ProductNat (Succ Z) a a1 * a = a
(ProductNat a b ab, SumNat ab b result) => ProductNat (Succ a) b resultExponentiationNat a Z (Succ Z)(ExponentiationNat a b ab, ProductNat ab a result) => ExponentiationNat a (Succ b) result(CompareNat a b ord) => CompareNat (Succ a) (Succ b) ordIsZeroNat (Succ a) FalsePred (Succ a) a
#CompareNat Source
class CompareNat (a :: Nat) (b :: Nat) (ord :: Ordering) | a b -> ordInstances
CompareNat a a EQCompareNat Z a LTCompareNat a Z GT(CompareNat a b ord) => CompareNat (Succ a) (Succ b) ord
#ExponentiationNat Source
class ExponentiationNat (a :: Nat) (b :: Nat) (c :: Nat) | a b -> cInstances
ExponentiationNat a Z (Succ Z)(ExponentiationNat a b ab, ProductNat ab a result) => ExponentiationNat a (Succ b) result
#ParseNat Source
class ParseNat (sym :: Symbol) (nat :: Nat) | nat -> sym, sym -> natParses a Nat from a Symbol
ParseNat "2" ~> (Succ (Succ Z))
ParseNat "1283" ~> (Succ (...))
Instances
ParseNat "0" ZParseNat "1" (Succ Z)ParseNat "2" (Succ (Succ Z))ParseNat "3" (Succ (Succ (Succ Z)))ParseNat "4" (Succ (Succ (Succ (Succ Z))))ParseNat "5" (Succ (Succ (Succ (Succ (Succ Z)))))ParseNat "6" (Succ (Succ (Succ (Succ (Succ (Succ Z))))))ParseNat "7" (Succ (Succ (Succ (Succ (Succ (Succ (Succ Z)))))))ParseNat "8" (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Z))))))))ParseNat "9" (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Z)))))))))(ParseNat head msd, Cons head tail sym, Length tail symLength, ExponentiationNat D10 symLength offset, ProductNat offset msd high, ParseNat tail lower, SumNat high lower res) => ParseNat sym res
#ProductNat Source
class ProductNat (a :: Nat) (b :: Nat) (c :: Nat) | a b -> ca * b = c
Instances
ProductNat Z a Z0 * a = 0
ProductNat (Succ Z) a a1 * a = a
(ProductNat a b ab, SumNat ab b result) => ProductNat (Succ a) b result
#powNat Source
powNat :: forall proxy a b c. ExponentiationNat a b c => proxy a -> proxy b -> proxy c> powNat d2 d3
8 -- : NProxy D8
a raised to the power of b a^b = c
#mulNat Source
mulNat :: forall proxy a b c. ProductNat a b c => proxy a -> proxy b -> proxy c
reflect a type-level Int to a value-level Int