Module
Data.Typelevel.Num.Ops
- Package
- purescript-typelevel
- Repository
- bodil/purescript-typelevel
#SuccP Source
class SuccP :: forall k1 k2 k3 k4 k5. k1 -> k2 -> k3 -> k4 -> k5 -> Constraint
class SuccP xh xl yh yl yz | xh xl -> yh yl yz, yh yl yz -> xh xl
Instances
(Failure (PredecessorOfZeroError x)) => SuccP (Tuple x x) (Tuple x x) D0 D0 True
SuccP xi D0 xi D1 False
SuccP xi D1 xi D2 False
SuccP xi D2 xi D3 False
SuccP xi D3 xi D4 False
SuccP xi D4 xi D5 False
SuccP xi D5 xi D6 False
SuccP xi D6 xi D7 False
SuccP xi D7 xi D8 False
SuccP xi D8 xi D9 False
(Succ xi yi) => SuccP xi D9 yi D0 False
#Failure Source
class Failure :: forall k. k -> Constraint
class Failure t
#PredecessorOfZeroError Source
data PredecessorOfZeroError :: forall k. k -> Type
data PredecessorOfZeroError t
#AddP Source
class AddP :: forall k1 k2. Type -> k1 -> k2 -> Constraint
class (Nat x) <= AddP x y z | x y -> z, z x -> y
Instances
(Nat y) => AddP D0 y y
(Succ y z) => AddP D1 y z
(Succ z z', AddP D1 y z) => AddP D2 y z'
(Succ z z', AddP D2 y z) => AddP D3 y z'
(Succ z z', AddP D3 y z) => AddP D4 y z'
(Succ z z', AddP D4 y z) => AddP D5 y z'
(Succ z z', AddP D5 y z) => AddP D6 y z'
(Succ z z', AddP D6 y z) => AddP D7 y z'
(Succ z z', AddP D7 y z) => AddP D8 y z'
(Succ z z', AddP D8 y z) => AddP D9 y z'
(Pos (NumCons xi xl), Nat z, AddP xi yi zi, DivMod10 y yi yl, AddP xl (NumCons zi yl) z) => AddP (NumCons xi xl) y z
#Sub Source
class Sub :: forall k1 k2 k3. k1 -> k2 -> k3 -> Constraint
class Sub x y z | x y -> z, z x -> y, z y -> x
Instances
#Mul Source
class Mul :: forall k. Type -> Type -> k -> Constraint
class (Nat x, Nat y) <= Mul x y z | x y -> z
Instances
(Nat y) => Mul D0 y D0
(Nat y) => Mul D1 y y
(Add y y z) => Mul D2 y z
(Add z y z', Mul D2 y z) => Mul D3 y z'
(Add z y z', Mul D3 y z) => Mul D4 y z'
(Add z y z', Mul D4 y z) => Mul D5 y z'
(Add z y z', Mul D5 y z) => Mul D6 y z'
(Add z y z', Mul D6 y z) => Mul D7 y z'
(Add z y z', Mul D7 y z) => Mul D8 y z'
(Add z y z', Mul D8 y z) => Mul D9 y z'
(Pos (NumCons xi xl), Nat y, Mul xi y z, Mul10 z z10, Mul xl y dy, Add dy z10 z') => Mul (NumCons xi xl) y z'
#DivModP Source
#Div Source
class Div :: forall k1 k2 k3. k1 -> k2 -> k3 -> Constraint
class Div x y z | x y -> z, x z -> y, y z -> x
Instances
#Mod Source
class Mod :: forall k1 k2 k3. k1 -> k2 -> k3 -> Constraint
class Mod x y r | x y -> r
Instances
#DivMod10 Source
class DivMod10 :: forall k. Type -> Type -> k -> Constraint
class (Nat i, Nat x) <= DivMod10 x i l | i l -> x, x -> i l
Instances
DivMod10 D0 D0 D0
DivMod10 D1 D0 D1
DivMod10 D2 D0 D2
DivMod10 D3 D0 D3
DivMod10 D4 D0 D4
DivMod10 D5 D0 D5
DivMod10 D6 D0 D6
DivMod10 D7 D0 D7
DivMod10 D8 D0 D8
DivMod10 D9 D0 D9
(Nat (NumCons D1 l)) => DivMod10 (NumCons D1 l) D1 l
(Nat (NumCons D2 l)) => DivMod10 (NumCons D2 l) D2 l
(Nat (NumCons D3 l)) => DivMod10 (NumCons D3 l) D3 l
(Nat (NumCons D4 l)) => DivMod10 (NumCons D4 l) D4 l
(Nat (NumCons D5 l)) => DivMod10 (NumCons D5 l) D5 l
(Nat (NumCons D6 l)) => DivMod10 (NumCons D6 l) D6 l
(Nat (NumCons D7 l)) => DivMod10 (NumCons D7 l) D7 l
(Nat (NumCons D8 l)) => DivMod10 (NumCons D8 l) D8 l
(Nat (NumCons D9 l)) => DivMod10 (NumCons D9 l) D9 l
(Nat (NumCons x l), Nat (NumCons (NumCons x l) l')) => DivMod10 (NumCons (NumCons x l) l') (NumCons x l) l'
#LT Source
data LT
Instances
(Nat x, Pos y) => DivModP x y D0 x LT
Show LT
Trich D0 D1 LT
Trich D0 D2 LT
Trich D0 D3 LT
Trich D0 D4 LT
Trich D0 D5 LT
Trich D0 D6 LT
Trich D0 D7 LT
Trich D0 D8 LT
Trich D0 D9 LT
(Pos (NumCons yi yl)) => Trich D0 (NumCons yi yl) LT
Trich D1 D2 LT
Trich D1 D3 LT
Trich D1 D4 LT
Trich D1 D5 LT
Trich D1 D6 LT
Trich D1 D7 LT
Trich D1 D8 LT
Trich D1 D9 LT
(Pos (NumCons yi yl)) => Trich D1 (NumCons yi yl) LT
Trich D2 D3 LT
Trich D2 D4 LT
Trich D2 D5 LT
Trich D2 D6 LT
Trich D2 D7 LT
Trich D2 D8 LT
Trich D2 D9 LT
(Pos (NumCons yi yl)) => Trich D2 (NumCons yi yl) LT
Trich D3 D4 LT
Trich D3 D5 LT
Trich D3 D6 LT
Trich D3 D7 LT
Trich D3 D8 LT
Trich D3 D9 LT
(Pos (NumCons yi yl)) => Trich D3 (NumCons yi yl) LT
Trich D4 D5 LT
Trich D4 D6 LT
Trich D4 D7 LT
Trich D4 D8 LT
Trich D4 D9 LT
(Pos (NumCons yi yl)) => Trich D4 (NumCons yi yl) LT
Trich D5 D6 LT
Trich D5 D7 LT
Trich D5 D8 LT
Trich D5 D9 LT
(Pos (NumCons yi yl)) => Trich D5 (NumCons yi yl) LT
Trich D6 D7 LT
Trich D6 D8 LT
Trich D6 D9 LT
(Pos (NumCons yi yl)) => Trich D6 (NumCons yi yl) LT
Trich D7 D8 LT
Trich D7 D9 LT
(Pos (NumCons yi yl)) => Trich D7 (NumCons yi yl) LT
Trich D8 D9 LT
(Pos (NumCons yi yl)) => Trich D8 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich D9 (NumCons yi yl) LT
CS LT r LT
MaxP x y LT y
(Nat x, Nat y, GCD y x gcd) => GCDP x y False LT gcd
#GT Source
data GT
Instances
(Nat x, Pos y, Sub x y x', Pred q q', DivMod x' y q' r) => DivModP x y q r GT
Show GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D0 GT
Trich D1 D0 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D1 GT
Trich D2 D0 GT
Trich D2 D1 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D2 GT
Trich D3 D0 GT
Trich D3 D1 GT
Trich D3 D2 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D3 GT
Trich D4 D0 GT
Trich D4 D1 GT
Trich D4 D2 GT
Trich D4 D3 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D4 GT
Trich D5 D0 GT
Trich D5 D1 GT
Trich D5 D2 GT
Trich D5 D3 GT
Trich D5 D4 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D5 GT
Trich D6 D0 GT
Trich D6 D1 GT
Trich D6 D2 GT
Trich D6 D3 GT
Trich D6 D4 GT
Trich D6 D5 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D6 GT
Trich D7 D0 GT
Trich D7 D1 GT
Trich D7 D2 GT
Trich D7 D3 GT
Trich D7 D4 GT
Trich D7 D5 GT
Trich D7 D6 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D7 GT
Trich D8 D0 GT
Trich D8 D1 GT
Trich D8 D2 GT
Trich D8 D3 GT
Trich D8 D4 GT
Trich D8 D5 GT
Trich D8 D6 GT
Trich D8 D7 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D8 GT
Trich D9 D0 GT
Trich D9 D1 GT
Trich D9 D2 GT
Trich D9 D3 GT
Trich D9 D4 GT
Trich D9 D5 GT
Trich D9 D6 GT
Trich D9 D7 GT
Trich D9 D8 GT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D9 GT
CS GT r GT
MaxP x y GT x
(Nat x, Nat y, Sub x y x', GCD x' y gcd) => GCDP x y False GT gcd
#Trich Source
class Trich :: forall k. Type -> Type -> k -> Constraint
class (Nat x, Nat y) <= Trich x y r | x y -> r
Instances
Trich D0 D0 EQ
Trich D0 D1 LT
Trich D0 D2 LT
Trich D0 D3 LT
Trich D0 D4 LT
Trich D0 D5 LT
Trich D0 D6 LT
Trich D0 D7 LT
Trich D0 D8 LT
Trich D0 D9 LT
(Pos (NumCons yi yl)) => Trich D0 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D0 GT
Trich D1 D0 GT
Trich D1 D1 EQ
Trich D1 D2 LT
Trich D1 D3 LT
Trich D1 D4 LT
Trich D1 D5 LT
Trich D1 D6 LT
Trich D1 D7 LT
Trich D1 D8 LT
Trich D1 D9 LT
(Pos (NumCons yi yl)) => Trich D1 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D1 GT
Trich D2 D0 GT
Trich D2 D1 GT
Trich D2 D2 EQ
Trich D2 D3 LT
Trich D2 D4 LT
Trich D2 D5 LT
Trich D2 D6 LT
Trich D2 D7 LT
Trich D2 D8 LT
Trich D2 D9 LT
(Pos (NumCons yi yl)) => Trich D2 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D2 GT
Trich D3 D0 GT
Trich D3 D1 GT
Trich D3 D2 GT
Trich D3 D3 EQ
Trich D3 D4 LT
Trich D3 D5 LT
Trich D3 D6 LT
Trich D3 D7 LT
Trich D3 D8 LT
Trich D3 D9 LT
(Pos (NumCons yi yl)) => Trich D3 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D3 GT
Trich D4 D0 GT
Trich D4 D1 GT
Trich D4 D2 GT
Trich D4 D3 GT
Trich D4 D4 EQ
Trich D4 D5 LT
Trich D4 D6 LT
Trich D4 D7 LT
Trich D4 D8 LT
Trich D4 D9 LT
(Pos (NumCons yi yl)) => Trich D4 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D4 GT
Trich D5 D0 GT
Trich D5 D1 GT
Trich D5 D2 GT
Trich D5 D3 GT
Trich D5 D4 GT
Trich D5 D5 EQ
Trich D5 D6 LT
Trich D5 D7 LT
Trich D5 D8 LT
Trich D5 D9 LT
(Pos (NumCons yi yl)) => Trich D5 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D5 GT
Trich D6 D0 GT
Trich D6 D1 GT
Trich D6 D2 GT
Trich D6 D3 GT
Trich D6 D4 GT
Trich D6 D5 GT
Trich D6 D6 EQ
Trich D6 D7 LT
Trich D6 D8 LT
Trich D6 D9 LT
(Pos (NumCons yi yl)) => Trich D6 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D6 GT
Trich D7 D0 GT
Trich D7 D1 GT
Trich D7 D2 GT
Trich D7 D3 GT
Trich D7 D4 GT
Trich D7 D5 GT
Trich D7 D6 GT
Trich D7 D7 EQ
Trich D7 D8 LT
Trich D7 D9 LT
(Pos (NumCons yi yl)) => Trich D7 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D7 GT
Trich D8 D0 GT
Trich D8 D1 GT
Trich D8 D2 GT
Trich D8 D3 GT
Trich D8 D4 GT
Trich D8 D5 GT
Trich D8 D6 GT
Trich D8 D7 GT
Trich D8 D8 EQ
Trich D8 D9 LT
(Pos (NumCons yi yl)) => Trich D8 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D8 GT
Trich D9 D0 GT
Trich D9 D1 GT
Trich D9 D2 GT
Trich D9 D3 GT
Trich D9 D4 GT
Trich D9 D5 GT
Trich D9 D6 GT
Trich D9 D7 GT
Trich D9 D8 GT
Trich D9 D9 EQ
(Pos (NumCons yi yl)) => Trich D9 (NumCons yi yl) LT
(Pos (NumCons yi yl)) => Trich (NumCons yi yl) D9 GT
(Pos (NumCons xi xl), Pos (NumCons yi yl), Trich xl yl rl, Trich xi yi ri, CS ri rl r) => Trich (NumCons xi xl) (NumCons yi yl) r