Search results

snoc :: forall a. Array a -> a -> Array a

Append an element to the end of an array, creating a new array.

snoc [1, 2, 3] 4 = [1, 2, 3, 4]
P purescript-arrays M Data.Array
flipScalarMul :: forall k f. VectorField f k => f k -> k -> f k
P purescript-vectorfield M Data.VectorField
downTo :: forall a. HasFromInt a => HasLess a => HasToInt a => a -> a -> Array a

Creates an array that ranges from the given upper bound down to the lower bound.

3 :downTo 1 -- [3, 2, 1]
1 :downTo 1 -- [1]
1 :downTo 3 -- []
P purescript-neon M Neon.Helper
range :: forall a. Range a => a -> a -> Array a
P purescript-bookhound M Bookhound.Utils.Array
snoc :: forall f a. Container f => f a -> a -> f a
P purescript-logoot-core M Data.Container
upTo :: forall a. HasFromInt a => HasGreater a => HasToInt a => a -> a -> Array a

Creates an array that ranges from the given lower bound down to the upper bound.

1 :upTo 3 -- [1, 2, 3]
1 :upTo 1 -- [1]
3 :upTo 1 -- []
P purescript-neon M Neon.Helper
voidLeft :: forall f a b. Functor f => f a -> b -> f b

A version of voidRight with its arguments flipped.

P purescript-prelude M Data.Functor
functorDecorateFlipped :: forall b a f. Functor f => Decorate b a => f a -> b -> f b
P purescript-materialize M Materialize.Markup.Decorate
rsingleton :: forall f g s v r. RSingleton f g s => Cons s v () r => Lacks s () => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton.RSingleton
singleton :: forall v s r g f. Cons s v () r => Lacks s () => RSingleton f g s => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton
many :: forall f a. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)

Attempt a computation multiple times, returning as many successful results as possible (possibly zero).

The Lazy constraint is used to generate the result lazily, to ensure termination.

P purescript-arrays M Data.Array
some :: forall f a. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)

Attempt a computation multiple times, requiring at least one success.

The Lazy constraint is used to generate the result lazily, to ensure termination.

P purescript-arrays M Data.Array
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u a

Returns a contiguous sequence of elements from the first value to the second value (inclusive).

enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']

The example shows Array return values, but the result can be any type with an Unfoldable1 instance.

P purescript-enums M Data.Enum
many :: forall a f. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)
P purescript-parsers M Text.Parsing.Combinators.Array
some :: forall a f. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)
P purescript-parsers M Text.Parsing.Combinators.Array
convertOption :: forall field from to sproxy. ConvertOption field from to => sproxy field -> from -> to
P purescript-web-fetch M Web.Fetch.Request
index :: forall f a b. Representable f a => f b -> (a -> b)
P purescript-functor-vector M Data.Functor.Representable
invokeAction :: forall m res args ctrl act. RemoteAction act ctrl args res => MonadReader Visualforce m => MonadAff m => MonadError RemoteActionError m => IsSymbol ctrl => Encode args => Decode res => act -> args -> m res

Function that invoke the action defined by referring to contraints which holds details about the correct controller to invoke. Example:

data PCMRequests = ..

data CreatePCMRequests = CreatePCMRequests

instance remoteActionCreatePCMs :: RemoteAction CreatePCMRequests "PCMMassController.createRecords" PCMRequests Unit

createPCMRequest :: Visualforce -> PCMRequests -> Aff (Either RemoteActionError Unit)
createPCMRequest vf rec =  runReaderT (runExceptT $ invokeAction CreatePCMRequests rec) vf
P purescript-sforce-remote-action M Salesforce.RemoteAction
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
duplicate :: forall a w. Extend w => w a -> w (w a)

Duplicate a comonadic context.

duplicate is dual to Control.Bind.join.

P purescript-control M Control.Extend
fold :: forall m. Monoid m => Array m -> m
P purescript-arrays M Data.Array