Search results
toElement :: HTMLElement -> Element
toElement :: forall e. IsElement e => e -> Element
currentTarget :: forall e. IsEvent e => e -> Element
Returns the Element
the event is currently bubbling through
target :: forall e. IsEvent e => e -> Element
Returns the Element
the event was dispatched against
unsafeEventTarget :: forall event. event -> Element
abs :: forall a. Ord a => Ring a => a -> a
The absolute value function. abs x
is defined as if x >= zero then x
else negate x
.
from :: forall a rep. Generic a rep => a -> rep
genericNot :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a
A Generic
implementation of the not
member from the HeytingAlgebra
type class.
genericNot' :: forall a. GenericHeytingAlgebra a => a -> a
negate :: forall a. Ring a => a -> a
negate x
can be used as a shorthand for zero - x
.
not :: forall a. HeytingAlgebra a => a -> a
recip :: forall a. DivisionRing a => a -> a
signum :: forall a. Ord a => Ring a => a -> a
The sign function; returns one
if the argument is positive,
negate one
if the argument is negative, or zero
if the argument is zero
.
For floating point numbers with signed zeroes, when called with a zero,
this function returns the argument in order to preserve the sign.
For any x
, we should have signum x * abs x == x
.
to :: forall a rep. Generic a rep => rep -> a
unwrap :: forall t a. Newtype t a => t -> a
wrap :: forall t a. Newtype t a => a -> t
unsafeCoerce :: forall a b. a -> b
A highly unsafe function, which can be used to persuade the type system that any type is the same as any other type. When using this function, it is your (that is, the caller's) responsibility to ensure that the underlying representation for both types is the same.
Because this function is extraordinarily flexible, type inference can greatly suffer. It is highly recommended to define specializations of this function rather than using it as-is. For example:
fromBoolean :: Boolean -> Json
fromBoolean = unsafeCoerce
This way, you won't have any nasty surprises due to the inferred type being different to what you expected.
After the v0.14.0 PureScript release, some of what was accomplished via
unsafeCoerce
can now be accomplished via coerce
from
purescript-safe-coerce
. See that library's documentation for more
context.
inj :: forall a b. Inject a b => a -> b
unsafePartial :: forall a. (Partial => a) -> a
Discharge a partiality constraint, unsafely.
from :: forall a b. TypeEquals a b => b -> a
to :: forall a b. TypeEquals a b => a -> b
convertDuration :: forall a b. Duration a => Duration b => a -> b
Converts directly between durations of differing types.
negateDuration :: forall a. Duration a => a -> a
Negates a duration, turning a positive duration negative or a negative duration positive.
coerce :: forall a b. Coercible a b => a -> b
Coerce a value of one type to a value of some other type, without changing
its runtime representation. This function behaves identically to
unsafeCoerce
at runtime. Unlike unsafeCoerce
, it is safe, because the
Coercible
constraint prevents any use of this function from compiling
unless the compiler can prove that the two types have the same runtime
representation.
One application for this function is to avoid doing work that you know is a
no-op because of newtypes. For example, if you have an Array (Conj a)
and you
want an Array (Disj a)
, you could do Data.Array.map (un Conj >>> Disj)
, but
this performs an unnecessary traversal of the array, with O(n) cost.
coerce
accomplishes the same with only O(1) cost:
mapConjToDisj :: forall a. Array (Conj a) -> Array (Disj a)
mapConjToDisj = coerce
div10 :: forall x q. Div10 x q => x -> q
isDivBy :: forall d x. IsDivBy d x => d -> x
mul10 :: forall x q. Mul10 x q => x -> q
not :: forall b1 b2. Not b1 b2 => b1 -> b2
pred :: forall x y. Pred x y => x -> y
succ :: forall x y. Succ x y => x -> y
cast :: forall a b. Castable a b => a -> b
coerce :: forall expected given. Coerce given expected => given -> expected
coerce :: forall expected given. Coerce given expected => given -> expected
ginverse :: forall g. Group g => g -> g
convertTo :: forall t f r. Recursive t f => Corecursive r f => t -> r
fill :: forall partial complete. Fillable partial complete => partial -> complete
justify :: forall unjust just. Justifiable unjust just => unjust -> just
mnegateL :: forall r x. LeftModule x r => x -> x
mnegateR :: forall r x. RightModule x r => x -> x
nextPrime :: forall a. Ord a => Semiring a => EuclideanRing a => a -> a
Ad infinitum
pad :: forall @n a b. Pad n a b => a -> b
unpad :: forall @n a b. Unpad n a b => b -> a
area :: forall s n. ToSize n s => Semiring n => s -> n
Get the area of a size
convertPos :: forall p1 p2 n. ToPos n p1 => FromPos n p2 => p1 -> p2
convertRegion :: forall p1 p2 n. ToRegion n p1 => FromRegion n p2 => p1 -> p2
convertSize :: forall p1 p2 n. ToSize n p1 => FromSize n p2 => p1 -> p2
init :: forall fn a. Init fn a => fn -> a
initProduct :: forall f a. InitProduct f a => f -> a
measure :: forall a v. Measured a v => a -> v
midPos :: forall s p n. ToRegion n s => FromPos n p => EuclideanRing n => s -> p
Get the center position of a region