Search results

padl :: Int -> Char -> String -> String
P purescript-graphql-client M GraphQL.Client.ToGqlString
clamp :: forall a. Ord a => a -> a -> a -> a

Clamp a value between a minimum and a maximum. For example:

let f = clamp 0 10
f (-5) == 0
f 5    == 5
f 15   == 10
P purescript-prelude M Data.Ord
replicate :: forall f a. Unfoldable f => Int -> a -> f a

Replicate a value some natural number of times. For example:

replicate 2 "foo" == (["foo", "foo"] :: Array String)
P purescript-unfoldable M Data.Unfoldable
replicate1 :: forall f a. Unfoldable1 f => Int -> a -> f a

Replicate a value n times. At least one value will be produced, so values n less than 1 will be treated as 1.

replicate1 2 "foo" == (NEL.cons "foo" (NEL.singleton "foo") :: NEL.NonEmptyList String)
replicate1 0 "foo" == (NEL.singleton "foo" :: NEL.NonEmptyList String)
P purescript-unfoldable M Data.Unfoldable1
folding :: forall f x y z. Folding f x y z => f -> x -> y -> z
P purescript-heterogeneous M Heterogeneous.Folding
hfoldl :: forall f x a b. HFoldl f x a b => f -> x -> a -> b
P purescript-heterogeneous M Heterogeneous.Folding
hfoldlWithIndex :: forall f x a b. HFoldlWithIndex f x a b => f -> x -> a -> b
P purescript-heterogeneous M Heterogeneous.Folding
mappingWithIndex :: forall f i a b. MappingWithIndex f i a b => f -> i -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
convertOptionsWithDefaults :: forall t defaults provided all. ConvertOptionsWithDefaults t defaults provided all => t -> defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
applyTo :: forall f this a b. f -> this -> a -> b

Apply a function to a this object with the given arguments

P purescript-ffi-simple M FFI.Simple.Functions
addLeadingZeros :: forall a. Elastic a => Int -> a -> a
P purescript-binary M Data.Binary
clamp :: forall a. HasGreater a => HasLess a => a -> a -> a -> a

Clamps a value between some bounds. If the lower bound is greater than the upper bound, they will be swapped.

2 :clamp 3 5 -- 3
4 :clamp 3 5 -- 4
6 :clamp 3 5 -- 5
6 :clamp 5 3 -- 5
P purescript-neon M Neon.Helper
folding :: forall f x y z. Folding f x y z => f -> x -> y -> z
P purescript-heterogenous M Heterogenous.Folding
hfoldl :: forall f x a b. HFoldl f x a b => f -> x -> a -> b
P purescript-heterogenous M Heterogenous.Folding
hfoldlWithIndex :: forall f x a b. HFoldlWithIndex f x a b => f -> x -> a -> b
P purescript-heterogenous M Heterogenous.Folding
mappingWithIndex :: forall f i a b. MappingWithIndex f i a b => f -> i -> a -> b
P purescript-heterogenous M Heterogenous.Mapping
new2 :: forall b a2 a1 o. o -> a1 -> a2 -> b
P purescript-ffi-utils M FFI.Util
offset :: forall q sql. ToOffset q => Resume q (Offset E) sql => Int -> q -> sql

OFFSET statement

Note: OFFSET must always follow after LIMIT or ORDER BY

P purescript-droplet M Droplet.Language.Internal.Syntax
replicate :: forall f a. Container f => Int -> a -> f a
P purescript-logoot-core M Data.Container
setUuid :: forall m. HasUuid m => Int -> m -> m
P purescript-liminal M Classes.HasUuid
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring