Data.CommutativeRing
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#CommutativeRing Source
class (Ring a) <= CommutativeRing a The CommutativeRing class is for rings where multiplication is
commutative.
Instances must satisfy the following law in addition to the Ring
laws:
- Commutative multiplication:
a * b = b * a
Instances
CommutativeRing IntCommutativeRing NumberCommutativeRing Unit(CommutativeRing b) => CommutativeRing (a -> b)(RowToList row list, CommutativeRingRecord list row row) => CommutativeRing (Record row)
#CommutativeRingRecord Source
class (RingRecord rowlist row subrow) <= CommutativeRingRecord rowlist row subrow | rowlist -> subrowA class for records where all fields have CommutativeRing instances, used
to implement the CommutativeRing instance for records.
Instances
CommutativeRingRecord Nil row ()(IsSymbol key, Cons key focus subrowTail subrow, CommutativeRingRecord rowlistTail row subrowTail, CommutativeRing focus) => CommutativeRingRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.Ring
#Ring Source
#RingRecord Source
class (SemiringRecord rowlist row subrow) <= RingRecord rowlist row subrow | rowlist -> subrowA class for records where all fields have Ring instances, used to
implement the Ring instance for records.
Instances
RingRecord Nil row ()(IsSymbol key, Cons key focus subrowTail subrow, RingRecord rowlistTail row subrowTail, Ring focus) => RingRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.Semiring
#Semiring Source
class Semiring a whereThe Semiring class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c) - Identity:
zero + a = a + zero = a - Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c) - Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c) - Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number and Int types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number, the presence of NaN and
Infinity values. The behaviour is unspecified in these cases.
Members
Instances
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
HeytingAlgebra - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Unsafe - Data.
Ordering - Data.
Ring - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Last - Data.
Semiring - Data.
Show - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Data. Row - Type.
Data. RowList