Search results

snoc :: forall a. Array a -> a -> Array a

Append an element to the end of an array, creating a new array.

snoc [1, 2, 3] 4 = [1, 2, 3, 4]
P purescript-arrays M Data.Array
flipScalarMul :: forall k f. VectorField f k => f k -> k -> f k
P purescript-vectorfield M Data.VectorField
downTo :: forall a. HasFromInt a => HasLess a => HasToInt a => a -> a -> Array a

Creates an array that ranges from the given upper bound down to the lower bound.

3 :downTo 1 -- [3, 2, 1]
1 :downTo 1 -- [1]
1 :downTo 3 -- []
P purescript-neon M Neon.Helper
range :: forall a. Range a => a -> a -> Array a
P purescript-bookhound M Bookhound.Utils.Array
snoc :: forall f a. Container f => f a -> a -> f a
P purescript-logoot-core M Data.Container
upTo :: forall a. HasFromInt a => HasGreater a => HasToInt a => a -> a -> Array a

Creates an array that ranges from the given lower bound down to the upper bound.

1 :upTo 3 -- [1, 2, 3]
1 :upTo 1 -- [1]
3 :upTo 1 -- []
P purescript-neon M Neon.Helper
voidLeft :: forall f a b. Functor f => f a -> b -> f b

A version of voidRight with its arguments flipped.

P purescript-prelude M Data.Functor
functorDecorateFlipped :: forall b a f. Functor f => Decorate b a => f a -> b -> f b
P purescript-materialize M Materialize.Markup.Decorate
rsingleton :: forall f g s v r. RSingleton f g s => Cons s v () r => Lacks s () => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton.RSingleton
singleton :: forall v s r g f. Cons s v () r => Lacks s () => RSingleton f g s => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton
many :: forall f a. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)

Attempt a computation multiple times, returning as many successful results as possible (possibly zero).

The Lazy constraint is used to generate the result lazily, to ensure termination.

P purescript-arrays M Data.Array
some :: forall f a. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)

Attempt a computation multiple times, requiring at least one success.

The Lazy constraint is used to generate the result lazily, to ensure termination.

P purescript-arrays M Data.Array
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u a

Returns a contiguous sequence of elements from the first value to the second value (inclusive).

enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']

The example shows Array return values, but the result can be any type with an Unfoldable1 instance.

P purescript-enums M Data.Enum
many :: forall a f. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)
P purescript-parsers M Text.Parsing.Combinators.Array
some :: forall a f. Alternative f => Lazy (f (Array a)) => f a -> f (Array a)
P purescript-parsers M Text.Parsing.Combinators.Array
convertOption :: forall field from to sproxy. ConvertOption field from to => sproxy field -> from -> to
P purescript-web-fetch M Web.Fetch.Request
index :: forall f a b. Representable f a => f b -> (a -> b)
P purescript-functor-vector M Data.Functor.Representable
invokeAction :: forall m res args ctrl act. RemoteAction act ctrl args res => MonadReader Visualforce m => MonadAff m => MonadError RemoteActionError m => IsSymbol ctrl => Encode args => Decode res => act -> args -> m res

Function that invoke the action defined by referring to contraints which holds details about the correct controller to invoke. Example:

data PCMRequests = ..

data CreatePCMRequests = CreatePCMRequests

instance remoteActionCreatePCMs :: RemoteAction CreatePCMRequests "PCMMassController.createRecords" PCMRequests Unit

createPCMRequest :: Visualforce -> PCMRequests -> Aff (Either RemoteActionError Unit)
createPCMRequest vf rec =  runReaderT (runExceptT $ invokeAction CreatePCMRequests rec) vf
P purescript-sforce-remote-action M Salesforce.RemoteAction
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
duplicate :: forall a w. Extend w => w a -> w (w a)

Duplicate a comonadic context.

duplicate is dual to Control.Bind.join.

P purescript-control M Control.Extend
fold :: forall m. Monoid m => Array m -> m
P purescript-arrays M Data.Array
head :: forall a. Partial => Array a -> a

Get the first element of a non-empty array.

Running time: O(1).

P purescript-arrays M Data.Array.Partial
last :: forall a. Partial => Array a -> a

Get the last element of a non-empty array.

Running time: O(1).

P purescript-arrays M Data.Array.Partial
unfoldable :: forall m f a. MonadRec m => MonadGen m => Unfoldable f => m a -> m (f a)

Creates a generator that produces unfoldable structures based on an existing generator for the elements.

The size of the unfoldable will be determined by the current size state for the generator. To generate an unfoldable structure of a particular size, use the resize function from the MonadGen class first.

P purescript-gen M Control.Monad.Gen
unwrapCofree :: forall f w a. ComonadCofree f w => w a -> f (w a)
P purescript-free M Control.Comonad.Cofree.Class
concat :: forall buf m. MutableBuffer buf m => Array buf -> m buf

Concatenates a list of buffers.

P purescript-node-buffer M Node.Buffer.Class
sans :: forall m a b. At m a b => a -> m -> m
P purescript-profunctor-lenses M Data.Lens.At
fork :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
suspend :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
add :: forall x y z. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b1 b2 b3. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall x y z. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b1 b2 b3. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall x y z. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b1 b2 b3. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall x y z. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall x y z. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall x y r. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall x y z. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b1 b2 b3. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall x y z. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall x y r. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b1 b2 b3. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
hmap :: forall f a b. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall f a b. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall f a b. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
convertOptions :: forall t i o. ConvertOptions t i o => t -> i -> o
P purescript-convertable-options M ConvertableOptions
defaults :: forall defaults provided all. Defaults defaults provided all => defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
bindTo :: forall f o. f -> o -> f
P purescript-ffi-simple M FFI.Simple.Functions
defaultUndef :: forall a. a -> a -> a
P purescript-ffi-simple M FFI.Simple.Undef
new :: forall f a o. f -> a -> o

Call new on the function with an array or pseudoarray of arguments

P purescript-ffi-simple M FFI.Simple.Functions
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
mapProduct :: forall mp a b. MapProduct mp a b => mp -> a -> b
P purescript-classless M Classless
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
act :: forall m s. Action m s => m -> s -> s

Convert a value of type @m@ to an action on @s@ values.

P purescript-monoid-extras M Data.Monoid.Action
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpurple M HTTPurple.Lookup
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
pathAppend :: forall m. XPathLike m => m -> m -> m

Put a path seperator between two XPaths and return the resulting XPath.

P purescript-xpath-like M Data.XPath
pathAppendNSx :: forall m. XPathLike m => m -> m -> m

Useful variant of pathAppend needed for some XPath implementations; insert a separator with a dummy namespace ("x") for the second XPath fragment. For example: root /? "record" /? "identifier" == "/x:record/x:identifier".

P purescript-xpath-like M Data.XPath