Search results

compile :: forall a. String -> a -> String

Compile a string into a template which can be applied to a context.

This function should be partially applyied, resulting in a compiled function which can be reused, instead of compiling the template on each application.

Note: This function performs no verification on the template string, so it is recommended that an appropriate type signature be given to the resulting function. For example:

hello :: { name :: String } -> String
hello = compile "Hello, {{name}}!"
P purescript-handlebars M Text.Handlebars
declareFlowType' :: forall a. HasFlowRep a => String -> a -> String

A convenience function for declaring types taking a concrete value over a proxy.

P purescript-bismuth M Bismuth.LibDef
generateFlowType' :: forall a. HasFlowRep a => String -> a -> String

A convenience function for generating types taking a concrete value over a proxy.

P purescript-bismuth M Bismuth

s

s :: forall a. String -> a -> String

Separator

P purescript-react-basic-textf M React.Basic.DOM.Textf.DateTimeFormat
power :: forall m. Monoid m => m -> Int -> m

Append a value to itself a certain number of times. For the Multiplicative type, and for a non-negative power, this is the same as normal number exponentiation.

If the second argument is negative this function will return mempty (unlike normal number exponentiation). The Monoid constraint alone is not enough to write a power function with the property that power x n cancels with power x (-n), i.e. power x n <> power x (-n) = mempty. For that, we would additionally need the ability to invert elements, i.e. a Group.

power [1,2] 3    == [1,2,1,2,1,2]
power [1,2] 1    == [1,2]
power [1,2] 0    == []
power [1,2] (-3) == []
P purescript-prelude M Data.Monoid
spy :: forall a. DebugWarning => String -> a -> a

Logs any value and returns it, using a "tag" or key value to annotate the traced value. Useful when debugging something in the middle of a expression, as you can insert this into the expression without having to break it up.

P purescript-debug M Debug
repeat :: forall a. Monoid a => a -> Int -> a
P purescript-formatters M Data.Formatter.Internal
power :: forall g. Group g => g -> Int -> g

Append a value (or its inverse) to itself a certain number of times.

For the Additive Int type, this is the same as multiplication.

P purescript-group M Data.Group
pow :: forall a. Semiring a => a -> Int -> a

Integer power

P purescript-sparse-polynomials M Data.Sparse.Polynomial
runFn0 :: forall b a. String -> a -> b
P purescript-airconsole M AirConsole.FFI
taggedLog :: forall a. String -> a -> a

For a string t and value a, calls console.log(t, a), then returns a.

P purescript-debuggest M Debug
taggedLogShow :: forall a. Show a => String -> a -> a

For a string t and value a, calls console.log(t, (show a)), then returns a.

P purescript-debuggest M Debug
unsafeGetField :: forall b a. String -> a -> b
P purescript-airconsole M AirConsole.FFI
destroyUnit :: forall audio engine. AudioInterpret audio engine => String -> audio -> engine

Destroy pointer x. For example, drop a sine wave oscillator from an audio graph. Note that this does not invoke garbage collection - it just removes the reference to the node, allowing it to be garbage collected.

P purescript-wags M WAGS.Interpret
effect0 :: forall b a. String -> a -> b
P purescript-weber M Weber.Event

m

m :: forall bem. WithModifiers bem => String -> bem -> bem
P purescript-css-bem M CSS.BEM
makeLoopBufWithDeferredBuffer :: forall audio engine. AudioInterpret audio engine => String -> audio -> engine

Make a looping audio buffer node with a deferred buffer.

P purescript-wags M WAGS.Interpret
makePeriodicOscWithDeferredOsc :: forall audio engine. AudioInterpret audio engine => String -> audio -> engine

Make a periodic oscillator.

P purescript-wags M WAGS.Interpret
makePlayBufWithDeferredBuffer :: forall audio engine. AudioInterpret audio engine => String -> audio -> engine

Make an audio buffer node with a deferred buffer.

P purescript-wags M WAGS.Interpret
question :: forall m e. MonadAff (console :: CONSOLE, readline :: READLINE | e) m => MonadAsk Interface m => String -> m String

Prompt for input, then read a line

P purescript-line-reader M LineReader
runThisFn0 :: forall a this. String -> this -> a
P purescript-screeps-classy M Screeps.FFI
unsafeField :: forall val obj. String -> obj -> val
P purescript-screeps-classy M Screeps.FFI
unsafeLog :: forall a. String -> a -> a

Unsafely write a string to the console.

unsafeLog "unsafe!" unit -- unit (logs "unsafe!")
P purescript-neon M Neon.Helper
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
crashWith :: forall a. Partial => String -> a

A partial function which crashes on any input with the specified message.

P purescript-partial M Partial
unsafeCrashWith :: forall a. String -> a

A function which crashes with the specified error message.

P purescript-partial M Partial.Unsafe
unsafeThrow :: forall a. String -> a

Defined as unsafeThrowException <<< error.

P purescript-exceptions M Effect.Exception.Unsafe
impossible :: forall a. String -> a
P purescript-variant M Data.Variant.Internal
unsafeRequire :: forall a. String -> a

Just calls require. You might also consider using the FFI instead. This function is, in general, horribly unsafe, and may perform side effects.

P purescript-node-process M Node.Globals
add :: forall z y x. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b3 b2 b1. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall z y x. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b3 b2 b1. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall z y x. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b3 b2 b1. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall z y x. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall z y x. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall r y x. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall z y x. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b3 b2 b1. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall z y x. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall r y x. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b3 b2 b1. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
fromString :: forall s. IsString s => String -> s
P purescript-css M CSS.String
url :: forall a. URL a => String -> a
P purescript-css M CSS.Common
hmap :: forall a b f. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall a b f. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall a b f. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
fromString :: forall a. IsString a => String -> a
P purescript-yarn M Data.String.Yarn
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
maddL :: forall r x. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall r x. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall r x. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall r x. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall r x. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall r x. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
readDefault :: forall a. Read a => Zero a => String -> a

Read a value a from a String but fallback on Zero a on failure

P purescript-read M Data.String.Read
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
stringValue :: forall a. Value a => String -> a
P purescript-markdown M Text.Markdown.SlamDown.Syntax.Value
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
pathAppend :: forall m. XPathLike m => m -> m -> m

Put a path seperator between two XPaths and return the resulting XPath.

P purescript-xpath-like M Data.XPath
pathAppendNSx :: forall m. XPathLike m => m -> m -> m

Useful variant of pathAppend needed for some XPath implementations; insert a separator with a dummy namespace ("x") for the second XPath fragment. For example: root /? "record" /? "identifier" == "/x:record/x:identifier".

P purescript-xpath-like M Data.XPath
setCtx :: forall ctx props props'. WithContextProps props' props ctx => ctx -> props' -> props
P purescript-react-hocs M ReactHocs.Class
and :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
dbg :: forall s a. Show s => s -> a -> a
P purescript-binary M Debug