Search results

padl :: Int -> Char -> String -> String
P purescript-graphql-client M GraphQL.Client.ToGqlString
clamp :: forall a. Ord a => a -> a -> a -> a

Clamp a value between a minimum and a maximum. For example:

let f = clamp 0 10
f (-5) == 0
f 5    == 5
f 15   == 10
P purescript-prelude M Data.Ord
replicate :: forall f a. Unfoldable f => Int -> a -> f a

Replicate a value some natural number of times. For example:

replicate 2 "foo" == (["foo", "foo"] :: Array String)
P purescript-unfoldable M Data.Unfoldable
replicate1 :: forall f a. Unfoldable1 f => Int -> a -> f a

Replicate a value n times. At least one value will be produced, so values n less than 1 will be treated as 1.

replicate1 2 "foo" == (NEL.cons "foo" (NEL.singleton "foo") :: NEL.NonEmptyList String)
replicate1 0 "foo" == (NEL.singleton "foo" :: NEL.NonEmptyList String)
P purescript-unfoldable M Data.Unfoldable1
folding :: forall f x y z. Folding f x y z => f -> x -> y -> z
P purescript-heterogeneous M Heterogeneous.Folding
hfoldl :: forall f x a b. HFoldl f x a b => f -> x -> a -> b
P purescript-heterogeneous M Heterogeneous.Folding
hfoldlWithIndex :: forall f x a b. HFoldlWithIndex f x a b => f -> x -> a -> b
P purescript-heterogeneous M Heterogeneous.Folding
mappingWithIndex :: forall f i a b. MappingWithIndex f i a b => f -> i -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
resultingWithLength :: forall f n acc x. ResultingWithLength f n acc x => f -> n -> acc -> x
P purescript-heterogeneous M Heterogeneous.Variadic
convertOptionsWithDefaults :: forall t defaults provided all. ConvertOptionsWithDefaults t defaults provided all => t -> defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
applyTo :: forall f this a b. f -> this -> a -> b

Apply a function to a this object with the given arguments

P purescript-ffi-simple M FFI.Simple.Functions
addLeadingZeros :: forall a. Elastic a => Int -> a -> a
P purescript-binary M Data.Binary
clamp :: forall a. HasGreater a => HasLess a => a -> a -> a -> a

Clamps a value between some bounds. If the lower bound is greater than the upper bound, they will be swapped.

2 :clamp 3 5 -- 3
4 :clamp 3 5 -- 4
6 :clamp 3 5 -- 5
6 :clamp 5 3 -- 5
P purescript-neon M Neon.Helper
folding :: forall f x y z. Folding f x y z => f -> x -> y -> z
P purescript-heterogenous M Heterogenous.Folding
hfoldl :: forall f x a b. HFoldl f x a b => f -> x -> a -> b
P purescript-heterogenous M Heterogenous.Folding
hfoldlWithIndex :: forall f x a b. HFoldlWithIndex f x a b => f -> x -> a -> b
P purescript-heterogenous M Heterogenous.Folding
mappingWithIndex :: forall f i a b. MappingWithIndex f i a b => f -> i -> a -> b
P purescript-heterogenous M Heterogenous.Mapping
new2 :: forall b a2 a1 o. o -> a1 -> a2 -> b
P purescript-ffi-utils M FFI.Util
offset :: forall q sql. ToOffset q => Resume q (Offset E) sql => Int -> q -> sql

OFFSET statement

Note: OFFSET must always follow after LIMIT or ORDER BY

P purescript-droplet M Droplet.Language.Internal.Syntax
replicate :: forall f a. Container f => Int -> a -> f a
P purescript-logoot-core M Data.Container
setUuid :: forall m. HasUuid m => Int -> m -> m
P purescript-liminal M Classes.HasUuid
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u a

Returns a contiguous sequence of elements from the first value to the second value (inclusive).

enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']

The example shows Array return values, but the result can be any type with an Unfoldable1 instance.

P purescript-enums M Data.Enum
create :: forall buf m. MutableBuffer buf m => Int -> m buf

Creates a new buffer of the specified size.

P purescript-node-buffer M Node.Buffer.Class
sans :: forall m a b. At m a b => a -> m -> m
P purescript-profunctor-lenses M Data.Lens.At
add :: forall x y z. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b1 b2 b3. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall x y z. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b1 b2 b3. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall x y z. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b1 b2 b3. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall x y z. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall x y z. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall x y r. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall x y z. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b1 b2 b3. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall x y z. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall x y r. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b1 b2 b3. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
hmap :: forall f a b. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall f a b. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall f a b. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
resulting :: forall f acc x. Resulting f acc x => f -> acc -> x
P purescript-heterogeneous M Heterogeneous.Variadic
variadic :: forall f acc args. Variadic f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
variadicWithIndex :: forall f acc args. VariadicWithIndex f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
convertOptions :: forall t i o. ConvertOptions t i o => t -> i -> o
P purescript-convertable-options M ConvertableOptions
defaults :: forall defaults provided all. Defaults defaults provided all => defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
fromInt :: forall a. IntLiftable a => Int -> a
P purescript-sparse-polynomials M Data.Sparse.Polynomial
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
bindTo :: forall f o. f -> o -> f
P purescript-ffi-simple M FFI.Simple.Functions
defaultUndef :: forall a. a -> a -> a
P purescript-ffi-simple M FFI.Simple.Undef
new :: forall f a o. f -> a -> o

Call new on the function with an array or pseudoarray of arguments

P purescript-ffi-simple M FFI.Simple.Functions
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
mapProduct :: forall mp a b. MapProduct mp a b => mp -> a -> b
P purescript-classless M Classless
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
act :: forall m s. Action m s => m -> s -> s

Convert a value of type @m@ to an action on @s@ values.

P purescript-monoid-extras M Data.Monoid.Action
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpurple M HTTPurple.Lookup
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
pathAppend :: forall m. XPathLike m => m -> m -> m

Put a path seperator between two XPaths and return the resulting XPath.

P purescript-xpath-like M Data.XPath
pathAppendNSx :: forall m. XPathLike m => m -> m -> m

Useful variant of pathAppend needed for some XPath implementations; insert a separator with a dummy namespace ("x") for the second XPath fragment. For example: root /? "record" /? "identifier" == "/x:record/x:identifier".

P purescript-xpath-like M Data.XPath
setCtx :: forall props' props ctx. WithContextProps props' props ctx => ctx -> props' -> props
P purescript-react-hocs M ReactHocs.Class
adjacentSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
and :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
arbitraryEJsonOfSize :: forall t m. MonadGen m => MonadRec m => Corecursive t EJsonF => Int -> m t
P purescript-ejson M Data.Json.Extended
child :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
dbg :: forall s a. Show s => s -> a -> a
P purescript-binary M Debug
descendant :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
diff :: forall a d. Diff a d => a -> a -> d
P purescript-incremental-functions M Data.Incremental
fromInt :: forall a. Ring a => Int -> a
P purescript-refined M Data.Refined.Internal
generalSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-colehaus-lattice M Data.Lattice
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-colehaus-lattice M Data.Lattice
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-ring-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-ring-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
nand :: forall α. HeytingAlgebra α => α -> α -> α
P purescript-unicode-prelude M Data.HeytingAlgebra.Unicode
nor :: forall α. HeytingAlgebra α => α -> α -> α
P purescript-unicode-prelude M Data.HeytingAlgebra.Unicode
or :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
patch :: forall a d. Patch a d => a -> d -> a
P purescript-incremental-functions M Data.Incremental
pursxStringAnonymous :: forall accumulator next res. PursxStringAnonymous accumulator next res => accumulator -> next -> res
P purescript-deku M Deku.Pursx.Anonymous
pursxValAnonymous :: forall accumulator next res. PursxValAnonymous accumulator next res => accumulator -> next -> res
P purescript-deku M Deku.Pursx.Anonymous
reciprocal :: forall n n1 n2 a r. Add n2 1 n1 => Add n1 1 n => Arity a n => Divisible r => Eq r => EuclideanRing r => Leadable r => Ord r => Pad n2 (Polynomial r) a => Peel r r => Unpad n2 (Polynomial r) a => a -> a -> a

Computes the reciprocal of the first polynomial in the extension whose minimal polynomial is provided by the second polynomial

P purescript-numberfield M Data.Algebraic.NumberField
set :: forall s t a b @sym lenses. IsSymbol sym => ParseSymbol sym lenses => ConstructBarlow lenses Function s t a b => b -> s -> t
P purescript-barlow-lens M Data.Lens.Barlow.Helpers
xor :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
xor :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-boolean-eq M Data.BooleanEq
xor :: forall α. HeytingAlgebra α => α -> α -> α
P purescript-unicode-prelude M Data.HeytingAlgebra.Unicode
_add :: forall a. HasAdd a => a -> a -> a
P purescript-neon M Neon.Operator
_and :: forall a. HasAnd a => a -> a -> a
P purescript-neon M Neon.Operator
_divide :: forall a. HasDivide a => a -> a -> a
P purescript-neon M Neon.Operator
_multiply :: forall a. HasMultiply a => a -> a -> a
P purescript-neon M Neon.Operator
_or :: forall a. HasOr a => a -> a -> a
P purescript-neon M Neon.Operator
_power :: forall a. HasPower a => a -> a -> a
P purescript-neon M Neon.Operator
_remainder :: forall a. HasRemainder a => a -> a -> a
P purescript-neon M Neon.Operator
_subtract :: forall a. HasSubtract a => a -> a -> a
P purescript-neon M Neon.Operator
add :: forall a. HasAdd a => a -> a -> a
P purescript-neon M Neon.Class.HasAdd
add :: forall a b c r. Arith a b c r => a -> b -> c
P purescript-z3 M Z3
always :: forall b a. a -> b -> a

Always returns the first argument.

"anything" :always 1 -- 1

This is the constant function.

P purescript-neon M Neon.Primitive.Function
and :: forall a. HasAnd a => a -> a -> a
P purescript-neon M Neon.Class.HasAnd
and :: forall a b r. LogicalMatcher a b r => a -> b -> r
P purescript-pmock M Test.PMock.Param
asTypeOf :: forall a. a -> a -> a

A type-restricted version of always.

[] :asTypeOf [1] -- [] :: Array Int
P purescript-neon M Neon.Helper
bind :: forall a g f. f -> a -> g
P purescript-ffi-utils M FFI.Util.Function
cons :: forall a b r. ConsGen a b r => a -> b -> r
P purescript-pmock M Test.PMock.Param
decorate :: forall a b. Decorate a b => a -> b -> a
P purescript-materialize M Materialize.Markup.Decorate
decorateFlipped :: forall b a. Decorate b a => a -> b -> b
P purescript-materialize M Materialize.Markup.Decorate
diff' :: forall changed model. Diff changed model => changed -> (model -> model)
P purescript-flame M Flame.Application.Effectful
div :: forall a b c r. Arith a b c r => a -> b -> c
P purescript-z3 M Z3
divide :: forall a. HasDivide a => a -> a -> a
P purescript-neon M Neon.Class.HasDivide