Module
Data.Bounded
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#Bounded Source
#BoundedRecord Source
class (OrdRecord rowlist row) <= BoundedRecord rowlist row subrow | rowlist -> subrow where
Members
topRecord :: forall rlproxy rproxy. rlproxy rowlist -> rproxy row -> Record subrow
bottomRecord :: forall rlproxy rproxy. rlproxy rowlist -> rproxy row -> Record subrow
Instances
BoundedRecord Nil row ()
(IsSymbol key, Bounded focus, Cons key focus rowTail row, Cons key focus subrowTail subrow, BoundedRecord rowlistTail row subrowTail) => BoundedRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.Ord
#Ordering Source
data Ordering
The Ordering
data type represents the three possible outcomes of
comparing two values:
LT
- The first value is less than the second.
GT
- The first value is greater than the second.
EQ
- The first value is equal to the second.
Constructors
Instances
#Ord Source
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
Bounded. Generic - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
Eq. Generic - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
Generic. Rep - Data.
HeytingAlgebra - Data.
HeytingAlgebra. Generic - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Generic - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Generic - Data.
Ordering - Data.
Ring - Data.
Ring. Generic - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Generic - Data.
Semigroup. Last - Data.
Semiring - Data.
Semiring. Generic - Data.
Show - Data.
Show. Generic - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Data. Row - Type.
Data. RowList - Type.
Proxy
The
Bounded
Int
instance hastop :: Int
equal to 2^31 - 1, andbottom :: Int
equal to -2^31, since these are the largest and smallest integers representable by twos-complement 32-bit integers, respectively.