Data.DivisionRing
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#DivisionRing Source
class (Ring a) <= DivisionRing a whereThe DivisionRing class is for non-zero rings in which every non-zero
element has a multiplicative inverse. Division rings are sometimes also
called skew fields.
Instances must satisfy the following laws in addition to the Ring laws:
- Non-zero ring:
one /= zero - Non-zero multiplicative inverse:
recip a * a = a * recip a = onefor all non-zeroa
The result of recip zero is left undefined; individual instances may
choose how to handle this case.
If a type has both DivisionRing and CommutativeRing instances, then
it is a field and should have a Field instance.
Members
recip :: a -> a
Instances
#leftDiv Source
leftDiv :: forall a. DivisionRing a => a -> a -> aLeft division, defined as leftDiv a b = recip b * a. Left and right
division are distinct in this module because a DivisionRing is not
necessarily commutative.
If the type a is also a EuclideanRing, then this function is
equivalent to div from the EuclideanRing class. When working
abstractly, div should generally be preferred, unless you know that you
need your code to work with noncommutative rings.
#rightDiv Source
rightDiv :: forall a. DivisionRing a => a -> a -> aRight division, defined as rightDiv a b = a * recip b. Left and right
division are distinct in this module because a DivisionRing is not
necessarily commutative.
If the type a is also a EuclideanRing, then this function is
equivalent to div from the EuclideanRing class. When working
abstractly, div should generally be preferred, unless you know that you
need your code to work with noncommutative rings.
Re-exports from Data.Ring
#Ring Source
class (Semiring a) <= Ring a whereThe Ring class is for types that support addition, multiplication,
and subtraction operations.
Instances must satisfy the following laws in addition to the Semiring
laws:
- Additive inverse:
a - a = zero - Compatibility of
subandnegate:a - b = a + (zero - b)
Members
sub :: a -> a -> a
Instances
Re-exports from Data.Semiring
#Semiring Source
class Semiring a whereThe Semiring class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c) - Identity:
zero + a = a + zero = a - Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c) - Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c) - Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number and Int types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number, the presence of NaN and
Infinity values. The behaviour is unspecified in these cases.
Members
Instances
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
Bounded. Generic - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
Eq. Generic - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
Generic. Rep - Data.
HeytingAlgebra - Data.
HeytingAlgebra. Generic - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Generic - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Generic - Data.
Ordering - Data.
Ring - Data.
Ring. Generic - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Generic - Data.
Semigroup. Last - Data.
Semiring - Data.
Semiring. Generic - Data.
Show - Data.
Show. Generic - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Data. Row - Type.
Data. RowList - Type.
Proxy