Data.DivisionRing
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#DivisionRing Source
class (Ring a) <= DivisionRing a where
The DivisionRing
class is for non-zero rings in which every non-zero
element has a multiplicative inverse. Division rings are sometimes also
called skew fields.
Instances must satisfy the following laws in addition to the Ring
laws:
- Non-zero ring:
one /= zero
- Non-zero multiplicative inverse:
recip a * a = a * recip a = one
for all non-zeroa
The result of recip zero
is left undefined; individual instances may
choose how to handle this case.
If a type has both DivisionRing
and CommutativeRing
instances, then
it is a field and should have a Field
instance.
Members
recip :: a -> a
Instances
#leftDiv Source
leftDiv :: forall a. DivisionRing a => a -> a -> a
Left division, defined as leftDiv a b = recip b * a
. Left and right
division are distinct in this module because a DivisionRing
is not
necessarily commutative.
If the type a
is also a EuclideanRing
, then this function is
equivalent to div
from the EuclideanRing
class. When working
abstractly, div
should generally be preferred, unless you know that you
need your code to work with noncommutative rings.
#rightDiv Source
rightDiv :: forall a. DivisionRing a => a -> a -> a
Right division, defined as rightDiv a b = a * recip b
. Left and right
division are distinct in this module because a DivisionRing
is not
necessarily commutative.
If the type a
is also a EuclideanRing
, then this function is
equivalent to div
from the EuclideanRing
class. When working
abstractly, div
should generally be preferred, unless you know that you
need your code to work with noncommutative rings.
Re-exports from Data.Ring
#Ring Source
class (Semiring a) <= Ring a where
The Ring
class is for types that support addition, multiplication,
and subtraction operations.
Instances must satisfy the following laws in addition to the Semiring
laws:
- Additive inverse:
a - a = zero
- Compatibility of
sub
andnegate
:a - b = a + (zero - b)
Members
sub :: a -> a -> a
Instances
Re-exports from Data.Semiring
#Semiring Source
class Semiring a where
The Semiring
class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c)
- Identity:
zero + a = a + zero = a
- Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c)
- Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c)
- Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number
and Int
types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number
, the presence of NaN
and
Infinity
values. The behaviour is unspecified in these cases.
Members
Instances
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
Bounded. Generic - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
Eq. Generic - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
Generic. Rep - Data.
HeytingAlgebra - Data.
HeytingAlgebra. Generic - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Generic - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Generic - Data.
Ordering - Data.
Reflectable - Data.
Ring - Data.
Ring. Generic - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Generic - Data.
Semigroup. Last - Data.
Semiring - Data.
Semiring. Generic - Data.
Show - Data.
Show. Generic - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Proxy