# Run

- Package
- purescript-run
- Repository
- natefaubion/purescript-run

### #Run Source

`newtype Run r a`

An extensible effect Monad, indexed by a set of effect functors. Effects are eliminated by interpretation into a pure value or into some base effect Monad.

An example using `State`

and `Except`

:

```
type MyEffects =
( state ∷ STATE Int
, except ∷ EXCEPT String
, eff ∷ EFF (console ∷ CONSOLE)
)
yesProgram ∷ Run MyEffects Unit
yesProgram = do
whenM (gets (_ < 0)) do
throw "Number is less than 0"
whileM_ (gets (_ > 0)) do
liftEff $ log "Yes"
modify (_ - 1)
main =
yesProgram
# catch (liftEff <<< log)
# runState 10
# runBaseEff
# void
```

#### Constructors

#### Instances

`Newtype (Run r a) _`

`Functor (Run r)`

`Apply (Run r)`

`Applicative (Run r)`

`Bind (Run r)`

`Monad (Run r)`

`MonadRec (Run r)`

`(TypeEquals (RProxy r1) (RProxy (effect :: EFFECT | r2))) => MonadEffect (Run r1)`

`(TypeEquals (RProxy r1) (RProxy (aff :: AFF, effect :: EFFECT | r2))) => MonadAff (Run r1)`

This will insert an

`EFF`

effect because`MonadAff`

entails`MonadEff`

. If you don't want this, use`Run.liftAff`

rather than`Control.Monad.Aff.Class.liftAff`

.`(TypeEquals (RProxy r1) (RProxy (choose :: CHOOSE | r2))) => Alt (Run r1)`

`(TypeEquals (RProxy r1) (RProxy (choose :: CHOOSE | r2))) => Plus (Run r1)`

`(TypeEquals (RProxy r1) (RProxy (choose :: CHOOSE | r2))) => Alternative (Run r1)`

### #interpretRec Source

`interpretRec :: forall r a m. MonadRec m => ((VariantF r) ~> m) -> Run r a -> m a`

Extracts the value from a program via some MonadRec `m`

, preserving
stack safety.

### #runAccumCont Source

`runAccumCont :: forall b a s r m. (s -> VariantF r (s -> m b) -> m b) -> (s -> a -> m b) -> s -> Run r a -> m b`

Extracts the value from a program via some `m`

using continuation passing
with an internal accumulator.

### #runAccumPure Source

`runAccumPure :: forall s b a r2 r1. (s -> VariantF r1 (Run r1 a) -> Step (Tuple s (Run r1 a)) (VariantF r2 (Run r1 a))) -> (s -> a -> b) -> s -> Run r1 a -> Run r2 b`

Eliminates effects purely with an internal accumulator. Uses `Step`

from
`Control.Monad.Rec.Class`

to preserve stack safety under tail recursion.

### #expand Source

`expand :: forall a rx r2 r1. Union r1 rx r2 => Run r1 a -> Run r2 a`

Casts some set of effects to a wider set of effects via a left-biased union. For example, you could take a closed effect and unify it with a superset of effects because we know the additional effects never occur.

```
type LessRows = (foo :: FOO)
type MoreRows = (foo :: FOO, bar :: BAR, baz :: BAZ)
foo :: Run LessRows Unit
foo = foo
foo' :: Run MoreRows Unit
foo' = expand foo
```

## Re-exports from **Control.**Monad.Rec.Class

## Re-exports from **Data.**Functor.Variant

### #onMatch Source

`onMatch :: forall b a r3 r2 r1 r rl. RowToList r rl => VariantFMatchCases rl r1 a b => Union r1 r2 r3 => Record r -> (VariantF r2 a -> b) -> VariantF r3 a -> b`

Match a `VariantF`

with a `Record`

containing functions for handling cases.
This is similar to `on`

, except instead of providing a single label and
handler, you can provide a record where each field maps to a particular
`VariantF`

case.

```
onMatch
{ foo: \foo -> "Foo: " <> maybe "nothing" id foo
, bar: \bar -> "Bar: " <> snd bar
}
```

Polymorphic functions in records (such as `show`

or `id`

) can lead
to inference issues if not all polymorphic variables are specified
in usage. When in doubt, label methods with specific types, such as
`show :: Int -> String`

, or give the whole record an appropriate type.

### #match Source

`match :: forall b a r2 r1 r rl. RowToList r rl => VariantFMatchCases rl r1 a b => Union r1 () r2 => Record r -> VariantF r2 a -> b`

Combinator for exhaustive pattern matching using an `onMatch`

case record.

```
matchFn :: VariantF (foo :: FProxy Maybe, bar :: FProxy (Tuple String), baz :: FProxy (Either String)) Int -> String
matchFn = match
{ foo: \foo -> "Foo: " <> maybe "nothing" show foo
, bar: \bar -> "Bar: " <> show (snd bar)
, baz: \baz -> "Baz: " <> either id show baz
}
```

### #default Source

`default :: forall r b a. a -> VariantF r b -> a`

Combinator for partial matching with a default value in case of failure.

```
caseFn :: forall r. VariantF (foo :: FProxy Maybe, bar :: FProxy (Tuple String) | r) Int -> String
caseFn = default "No match"
# on (SProxy :: SProxy "foo") (\foo -> "Foo: " <> maybe "nothing" show foo)
# on (SProxy :: SProxy "bar") (\bar -> "Bar: " <> show (snd bar))
```

### #case_ Source

`case_ :: forall b a. VariantF () a -> b`

Combinator for exhaustive pattern matching.

```
caseFn :: VariantF (foo :: FProxy Maybe, bar :: FProxy (Tuple String), baz :: FProxy (Either String)) Int -> String
caseFn = case_
# on (SProxy :: SProxy "foo") (\foo -> "Foo: " <> maybe "nothing" show foo)
# on (SProxy :: SProxy "bar") (\bar -> "Bar: " <> show (snd bar))
# on (SProxy :: SProxy "baz") (\baz -> "Baz: " <> either id show baz)
```

This instance is provided for compatibility, but is otherwise unnecessary. You can use monadic recursion with

`Run`

, deferring the`MonadRec`

constraint till it is interpretted.