Search results

elem :: forall a f. Foldable f => Eq a => a -> f a -> Boolean

Test whether a value is an element of a data structure.

P purescript-foldable-traversable M Data.Foldable
notElem :: forall a f. Foldable f => Eq a => a -> f a -> Boolean

Test whether a value is not an element of a data structure.

P purescript-foldable-traversable M Data.Foldable
contains :: forall b a. HasEqual b => HasReduce a => b -> a b -> Boolean

Returns true if the container contains the element.

[1, 2, 3] :contains 2 -- true
[1, 0, 3] :contains 2 -- false
P purescript-neon M Neon.Helper
intercalate :: forall f m. Foldable f => Monoid m => m -> f m -> m

Fold a data structure, accumulating values in some Monoid, combining adjacent elements using the specified separator.

For example:

> intercalate ", " ["Lorem", "ipsum", "dolor"]
= "Lorem, ipsum, dolor"

> intercalate "*" ["a", "b", "c"]
= "a*b*c"

> intercalate [1] [[2, 3], [4, 5], [6, 7]]
= [2, 3, 1, 4, 5, 1, 6, 7]
P purescript-foldable-traversable M Data.Foldable
intercalate :: forall f m. Foldable1 f => Semigroup m => m -> f m -> m

Fold a data structure using a Semigroup instance, combining adjacent elements using the specified separator.

P purescript-foldable-traversable M Data.Semigroup.Foldable
surround :: forall f m. Foldable f => Semigroup m => m -> f m -> m

fold but with each element surrounded by some fixed value.

For example:

> surround "*" []
= "*"

> surround "*" ["1"]
= "*1*"

> surround "*" ["1", "2"]
= "*1*2*"

> surround "*" ["1", "2", "3"]
= "*1*2*3*"
P purescript-foldable-traversable M Data.Foldable
consMax :: forall a f. Foldable f => Ord a => a -> f a -> a
P purescript-liminal M Data.Geometry.BoundingBox
consMin :: forall a f. Foldable f => Ord a => a -> f a -> a
P purescript-liminal M Data.Geometry.BoundingBox
peek :: forall s w a. ComonadStore s w => s -> w a -> a
P purescript-transformers M Control.Comonad.Store.Class
track :: forall t w a. ComonadTraced t w => t -> w a -> a
P purescript-transformers M Control.Comonad.Traced.Class
buildLeaf :: forall e f p v. ElementBuilder e f p v => e -> f p -> v
P purescript-concur-core M Concur.Core.ElementBuilder
eq :: forall a. Eq a => a -> a -> Boolean
P purescript-prelude M Data.Eq
genericEq :: forall a rep. Generic a rep => GenericEq rep => a -> a -> Boolean

A Generic implementation of the eq member from the Eq type class.

P purescript-prelude M Data.Eq.Generic
genericEq' :: forall a. GenericEq a => a -> a -> Boolean
P purescript-prelude M Data.Eq.Generic
greaterThan :: forall a. Ord a => a -> a -> Boolean

Test whether one value is strictly greater than another.

P purescript-prelude M Data.Ord
greaterThanOrEq :: forall a. Ord a => a -> a -> Boolean

Test whether one value is non-strictly greater than another.

P purescript-prelude M Data.Ord
lessThan :: forall a. Ord a => a -> a -> Boolean

Test whether one value is strictly less than another.

P purescript-prelude M Data.Ord
lessThanOrEq :: forall a. Ord a => a -> a -> Boolean

Test whether one value is non-strictly less than another.

P purescript-prelude M Data.Ord
notEq :: forall a. Eq a => a -> a -> Boolean

notEq tests whether one value is not equal to another. Shorthand for not (eq x y).

P purescript-prelude M Data.Eq
reallyUnsafeRefEq :: forall a b. a -> b -> Boolean

Compares two values of different types using strict (===) equality.

P purescript-unsafe-reference M Unsafe.Reference
unsafeRefEq :: forall a. a -> a -> Boolean

Compares two values of the same type using strict (===) equality.

P purescript-unsafe-reference M Unsafe.Reference
instanceOf :: forall a b. a -> b -> Boolean

Checks whether an object is an instance of an invokable

P purescript-ffi-simple M FFI.Simple.Objects
inside :: forall r p n. ToRegion n r => ToPos n p => Ord n => Semiring n => r -> p -> Boolean

Checks if a position is inside a region. Size of the region should be positive. Inclusive on the lower bound, exclusive on the higher bound.

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
outside :: forall r p n. ToRegion n r => ToPos n p => Ord n => Semiring n => r -> p -> Boolean

inside, but with its result negated.

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
parallel :: forall p n. ToPos n p => EuclideanRing n => Eq n => p -> p -> Boolean

Check if two vectors are parallel

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
perpendicular :: forall p n. ToPos n p => Semiring n => Eq n => p -> p -> Boolean

Check if two vectors are perpendicular

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
contains :: forall n. IsNode n => n -> n -> Boolean
P purescript-dom-simple M DOM.Simple.Node
absorption :: forall a. HeytingAlgebra a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.HeytingAlgebra
antisymmetry :: forall a. Ord a => a -> a -> Boolean

x <= y && y <= x => x == y

P purescript-abides M Test.Abides.Data.Ord
commutative :: forall a. CommutativeRing a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.CommutativeRing
commutative :: forall a. HeytingAlgebra a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.HeytingAlgebra
compareHom :: forall a. BoundedEnum a => Ord a => a -> a -> Boolean

compare x y == compare (fromEnum x) (fromEnum y)

P purescript-abides M Test.Abides.Data.BoundedEnum
divides :: forall α. Eq α => EuclideanRing α => α -> α -> Boolean
P purescript-unicode-prelude M Data.EuclideanRing.Unicode
genericEq1 :: forall a. GenericEq1 a => a -> a -> Boolean
P purescript-higher-order M Data.Operator.Eq
greaterThan :: forall a. PartialOrd a => a -> a -> Boolean
P purescript-partial-order M Data.Ord.Partial
greaterThanOrEq :: forall a. PartialOrd a => a -> a -> Boolean
P purescript-partial-order M Data.Ord.Partial
integralDomain :: forall a. EuclideanRing a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.EuclideanRing
lessThan :: forall a. PartialOrd a => a -> a -> Boolean
P purescript-partial-order M Data.Ord.Partial
lessThanOrEq :: forall a. PartialOrd a => a -> a -> Boolean
P purescript-partial-order M Data.Ord.Partial
negation :: forall a. Eq a => a -> a -> Boolean

x /= y => not (x == y)

P purescript-abides M Test.Abides.Data.Eq
notDivides :: forall α. Eq α => EuclideanRing α => α -> α -> Boolean
P purescript-unicode-prelude M Data.EuclideanRing.Unicode
quotientRemainder :: forall a. EuclideanRing a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.EuclideanRing
submultiplicative :: forall a. EuclideanRing a => Eq a => a -> a -> Boolean
P purescript-abides M Test.Abides.Data.EuclideanRing
symmetry :: forall a. Eq a => a -> a -> Boolean

x == y => y == x?

P purescript-abides M Test.Abides.Data.Eq
_equal :: forall a. HasEqual a => a -> a -> Boolean
P purescript-neon M Neon.Operator
_greater :: forall a. HasGreater a => a -> a -> Boolean
P purescript-neon M Neon.Operator
_greaterOrEqual :: forall a. HasEqual a => HasGreater a => a -> a -> Boolean
P purescript-neon M Neon.Operator
_less :: forall a. HasLess a => a -> a -> Boolean
P purescript-neon M Neon.Operator
_lessOrEqual :: forall a. HasEqual a => HasLess a => a -> a -> Boolean
P purescript-neon M Neon.Operator
_notEqual :: forall a. HasEqual a => a -> a -> Boolean
P purescript-neon M Neon.Operator
compareReference :: forall a. a -> a -> Boolean
P purescript-flame M Flame.Internal.Equality
divisibleBy :: forall a. HasEqual a => HasRemainder a => HasZero a => a -> a -> Boolean

Returns true if the number is divisible by the other.

9 :divisibleBy 3 -- true
8 :divisibleBy 3 -- false
P purescript-neon M Neon.Helper
eqById :: forall a. HasId a => a -> a -> Boolean
P purescript-screeps-classy M Screeps.Id
equal :: forall a. HasEqual a => a -> a -> Boolean
P purescript-neon M Neon.Class.HasEqual
greater :: forall a. HasGreater a => a -> a -> Boolean
P purescript-neon M Neon.Class.HasGreater
greaterOrEqual :: forall a. HasEqual a => HasGreater a => a -> a -> Boolean

Returns true if the value is greater than or equal to the other.

2 :greaterOrEqual 1 -- true
2 :greaterOrEqual 2 -- true
2 :greaterOrEqual 3 -- false
P purescript-neon M Neon.Helper
includes :: forall key range. IDBKey key => IDBKeyRange range => range -> key -> Boolean

Returns true if key is included in the range, and false otherwise.

P purescript-indexed-db M Database.IndexedDB.IDBKeyRange
includes :: forall range key. IDBKey key => IDBKeyRange range => range -> key -> Boolean

Returns true if key is included in the range, and false otherwise.

P purescript-indexeddb M Database.IndexedDB.IDBKeyRange
instanceof :: forall b a. a -> b -> Boolean
P purescript-ffi-utils M FFI.Util
less :: forall a. HasLess a => a -> a -> Boolean
P purescript-neon M Neon.Class.HasLess
lessOrEqual :: forall a. HasEqual a => HasLess a => a -> a -> Boolean

Returns true if the value is less than or equal to the other.

2 :lessOrEqual 1 -- false
2 :lessOrEqual 2 -- true
2 :lessOrEqual 3 -- true
P purescript-neon M Neon.Helper
matchObjectsOnId :: forall a b. HasUuid a => HasUuid b => a -> b -> Boolean
P purescript-liminal M Classes.HasUuid
modelHasChanged :: forall model. model -> model -> Boolean
P purescript-flame M Flame.Internal.Equality
notEqual :: forall a. HasEqual a => a -> a -> Boolean

Returns true if the value is not equal to the other.

2 :notEqual 1 -- true
1 :notEqual 1 -- true
P purescript-neon M Neon.Helper
notMatchObjectsOnId :: forall a b. HasUuid a => HasUuid b => a -> b -> Boolean
P purescript-liminal M Classes.HasUuid
rEq :: forall r. Fold EqS r (AppCat (Function r) Function Boolean Boolean) => r -> r -> Boolean
P purescript-record-fold M Data.Record.Fold
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
sans :: forall m a b. At m a b => a -> m -> m
P purescript-profunctor-lenses M Data.Lens.At
add :: forall x y z. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b1 b2 b3. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall x y z. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b1 b2 b3. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall x y z. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b1 b2 b3. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall x y z. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall x y z. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall x y r. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall x y z. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b1 b2 b3. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall x y z. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall x y r. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b1 b2 b3. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
hmap :: forall f a b. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall f a b. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall f a b. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
convertOptions :: forall t i o. ConvertOptions t i o => t -> i -> o
P purescript-convertable-options M ConvertableOptions
defaults :: forall defaults provided all. Defaults defaults provided all => defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
bindTo :: forall f o. f -> o -> f
P purescript-ffi-simple M FFI.Simple.Functions
defaultUndef :: forall a. a -> a -> a
P purescript-ffi-simple M FFI.Simple.Undef
new :: forall f a o. f -> a -> o

Call new on the function with an array or pseudoarray of arguments

P purescript-ffi-simple M FFI.Simple.Functions
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
mapProduct :: forall mp a b. MapProduct mp a b => mp -> a -> b
P purescript-classless M Classless
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
act :: forall m s. Action m s => m -> s -> s

Convert a value of type @m@ to an action on @s@ values.

P purescript-monoid-extras M Data.Monoid.Action
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpurple M HTTPurple.Lookup
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
pathAppend :: forall m. XPathLike m => m -> m -> m

Put a path seperator between two XPaths and return the resulting XPath.

P purescript-xpath-like M Data.XPath
pathAppendNSx :: forall m. XPathLike m => m -> m -> m

Useful variant of pathAppend needed for some XPath implementations; insert a separator with a dummy namespace ("x") for the second XPath fragment. For example: root /? "record" /? "identifier" == "/x:record/x:identifier".

P purescript-xpath-like M Data.XPath
setCtx :: forall props' props ctx. WithContextProps props' props ctx => ctx -> props' -> props
P purescript-react-hocs M ReactHocs.Class
adjacentSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
and :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
child :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
dbg :: forall s a. Show s => s -> a -> a
P purescript-binary M Debug
descendant :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
diff :: forall a d. Diff a d => a -> a -> d
P purescript-incremental-functions M Data.Incremental
generalSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-colehaus-lattice M Data.Lattice
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module