Module
Data.BooleanAlgebra
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#BooleanAlgebra Source
class (HeytingAlgebra a) <= BooleanAlgebra a The BooleanAlgebra type class represents types that behave like boolean
values.
Instances should satisfy the following laws in addition to the
HeytingAlgebra law:
- Excluded middle:
a || not a = tt
Instances
BooleanAlgebra BooleanBooleanAlgebra Unit(BooleanAlgebra b) => BooleanAlgebra (a -> b)(RowToList row list, BooleanAlgebraRecord list row row) => BooleanAlgebra (Record row)BooleanAlgebra (Proxy a)BooleanAlgebra (Proxy2 a)BooleanAlgebra (Proxy3 a)
#BooleanAlgebraRecord Source
class (HeytingAlgebraRecord rowlist row subrow) <= BooleanAlgebraRecord rowlist row subrow | rowlist -> subrowInstances
BooleanAlgebraRecord Nil row ()(IsSymbol key, Cons key focus subrowTail subrow, BooleanAlgebraRecord rowlistTail row subrowTail, BooleanAlgebra focus) => BooleanAlgebraRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.HeytingAlgebra
#HeytingAlgebra Source
class HeytingAlgebra a whereThe HeytingAlgebra type class represents types that are bounded lattices with
an implication operator such that the following laws hold:
- Associativity:
a || (b || c) = (a || b) || ca && (b && c) = (a && b) && c
- Commutativity:
a || b = b || aa && b = b && a
- Absorption:
a || (a && b) = aa && (a || b) = a
- Idempotent:
a || a = aa && a = a
- Identity:
a || ff = aa && tt = a
- Implication:
a `implies` a = tta && (a `implies` b) = a && bb && (a `implies` b) = ba `implies` (b && c) = (a `implies` b) && (a `implies` c)
- Complemented:
not a = a `implies` ff
Members
Instances
HeytingAlgebra BooleanHeytingAlgebra Unit(HeytingAlgebra b) => HeytingAlgebra (a -> b)HeytingAlgebra (Proxy a)HeytingAlgebra (Proxy2 a)HeytingAlgebra (Proxy3 a)(RowToList row list, HeytingAlgebraRecord list row row) => HeytingAlgebra (Record row)
#HeytingAlgebraRecord Source
class HeytingAlgebraRecord rowlist row subrow | rowlist -> subrowInstances
HeytingAlgebraRecord Nil row ()(IsSymbol key, Cons key focus subrowTail subrow, HeytingAlgebraRecord rowlistTail row subrowTail, HeytingAlgebra focus) => HeytingAlgebraRecord (Cons key focus rowlistTail) row subrow
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
Bounded. Generic - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
Eq. Generic - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
Generic. Rep - Data.
HeytingAlgebra - Data.
HeytingAlgebra. Generic - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Generic - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Generic - Data.
Ordering - Data.
Ring - Data.
Ring. Generic - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Generic - Data.
Semigroup. Last - Data.
Semiring - Data.
Semiring. Generic - Data.
Show - Data.
Show. Generic - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Data. Row - Type.
Data. RowList - Type.
Proxy