Search results

pow :: Int -> Int -> Int

Raise an Int to the power of another Int.

P purescript-integers M Data.Int
pow :: Number -> Number -> Number

Return the first argument exponentiated to the power of the second argument.

P purescript-math M Math
pow :: Number -> Number -> Number

Return the first argument exponentiated to the power of the second argument.

> pow 3.0 2.0
9.0
> sqrt 42.0 == pow 42.0 0.5
true
P purescript-numbers M Data.Number
pow :: UInt -> UInt -> UInt

Raises the first argument to the power of the second argument (the exponent).

> pow (fromInt 2) (fromInt 3)
8u
P purescript-uint M Data.UInt
pow :: BigInt -> BigInt -> BigInt

Raise a BigInt to the power of another BigInt.

pow (fromInt 2) (fromInt 3) -- 2^3
P purescript-js-bigints M JS.BigInt
pow :: BigInt -> BigInt -> BigInt

Exponentiation for BigInt. If the exponent is less than 0, pow returns 0. Also, pow zero zero == one.

P purescript-bigints M Data.BigInt
pow :: Cartesian Number -> Number -> Cartesian Number

Real power of a complex

P purescript-cartesian M Data.Complex
pow :: Decimal -> Decimal -> Decimal

Exponentiation for Decimal.

P purescript-decimals M Data.Decimal
pow :: HugeNum -> Int -> HugeNum

Raise a HugeNum to an integer power.

P purescript-precise M Data.HugeNum
pow :: forall a. Semiring a => a -> Int -> a

Integer power

P purescript-sparse-polynomials M Data.Sparse.Polynomial
pow :: Int53 -> Int53 -> Int53

Raises the first argument to the power of the second argument (the exponent).

If the exponent is less than 0, then pow returns 0.

pow (fromInt 2) (fromInt 3) == (fromInt 8)
pow (fromInt 2) (fromInt 0) == (fromInt 1)
pow (fromInt 0) (fromInt 0) == (fromInt 1)
pow (fromInt 2) (fromInt (-2)) == (fromInt 0)
P purescript-int-53 M Data.Int53
pow :: BigNumber -> BigNumber -> BigNumber
P purescript-bignumber M Data.BigNumber
pow :: forall a. Eq a => Semiring a => Square a -> Int -> Square a

Integer power of a square matrix

P purescript-sparse-matrices M Data.Sparse.Matrix
pow :: BigNumber -> Int -> BigNumber

Exponentiate a BigNumber

P purescript-eth-core M Network.Ethereum.Core.BigNumber
pow :: BigInt -> BigInt -> BigInt
P purescript-big-integer M Data.Int.Big
pow :: Cartesian Number -> Number -> Cartesian Number

Real power of a complex

P purescript-complex M Data.Complex
pow :: forall k. NumCat k => k (Number /\ Number) Number
P purescript-dual-numbers M Data.Number.Dual
pow :: Quat -> Number -> Quat

Calculate the scalar power of a unit quaternion.

P purescript-gl-matrix M GLMatrix.Quat
Pow :: NumberValue -> NumberValue -> NumberValue
P purescript-math-equation M Math.Equation
pow :: P5 -> Number -> Number -> Number

p5js.org documentation

P purescript-p5 M P5.Math.Calculation
pow :: Quantity -> Decimal -> Quantity

Raise a quantity to a given power.

P purescript-quantities M Data.Quantity
Pow :: BinaryOperator
P purescript-sql-squared M SqlSquared.Signature.BinaryOperator
pow :: forall a b c r. Arith a b c r => a -> b -> c
P purescript-z3 M Z3
power :: forall m. Monoid m => m -> Int -> m

Append a value to itself a certain number of times. For the Multiplicative type, and for a non-negative power, this is the same as normal number exponentiation.

If the second argument is negative this function will return mempty (unlike normal number exponentiation). The Monoid constraint alone is not enough to write a power function with the property that power x n cancels with power x (-n), i.e. power x n <> power x (-n) = mempty. For that, we would additionally need the ability to invert elements, i.e. a Group.

power [1,2] 3    == [1,2,1,2,1,2]
power [1,2] 1    == [1,2]
power [1,2] 0    == []
power [1,2] (-3) == []
P purescript-prelude M Data.Monoid
power :: forall g. Group g => g -> Int -> g

Append a value (or its inverse) to itself a certain number of times.

For the Additive Int type, this is the same as multiplication.

P purescript-group M Data.Group
power :: Icons
P purescript-materialize M Materialize.Icons.Data
power :: forall a. HasPower a => a -> a -> a
P purescript-neon M Neon.Class.HasPower
power :: DerivedUnit -> Number -> DerivedUnit

Raise a unit to the given power.

P purescript-quantities M Data.Units
power :: PowerBank -> Int
P purescript-screeps-classy M Screeps.PowerBank
power :: PowerSpawn -> Int
P purescript-screeps-classy M Screeps.PowerSpawn
power :: BigNumState -> BigNumState -> BigNumState
P purescript-sjcl M Crypto.SJCL.BigNum
powNat :: forall proxy a b c. ExponentiationNat a b c => proxy a -> proxy b -> proxy c
> powNat d2 d3
8 -- : NProxy D8

a raised to the power of b a^b = c

P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
powermod :: BigNumState -> BigNumState -> BigNumState -> BigNumState
P purescript-sjcl M Crypto.SJCL.BigNum
powerSet :: forall a. Ord a => Set a -> Set (Set a)
P purescript-causal-graphs M Data.Graph.Causal.Utility
P purescript-screeps-classy M Screeps.PowerBank
powderBlue :: Color

#B0E0E6

P purescript-emo8 M Emo8.Data.Color
powderblue :: Color
P purescript-open-colors-scales-and-schemes M Color.Scheme.X11
powderblue :: Color
P purescript-reactnative M ReactNative.PropTypes.Color
powerInput :: Icons
P purescript-materialize M Materialize.Icons.Data
P purescript-d3 M Graphics.D3.Scale
powerScale :: forall r. D3Eff (PowerScale Number r)
P purescript-d3 M Graphics.D3.Scale
P purescript-screeps-classy M Screeps.PowerSpawn
powerCapacity :: PowerSpawn -> Int
P purescript-screeps-classy M Screeps.PowerSpawn
P purescript-screeps-classy M Screeps.PowerBank
power_bank_hits :: Int
P purescript-screeps-classy M Screeps.Constants
P purescript-screeps-classy M Screeps.PowerSpawn
powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> Boolean

A magma M is power-associative if the subalgebra generated by any element is associative.

∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x

P purescript-colehaus-properties M Control.Algebra.Properties
powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> Boolean

A magma M is power-associative if the subalgebra generated by any element is associative.

∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x

P purescript-properties M Control.Algebra.Properties
power_bank_decay :: Int
P purescript-screeps-classy M Screeps.Constants
power_spawn_hits :: Int
P purescript-screeps-classy M Screeps.Constants
powerSettingsNew :: Icons
P purescript-materialize M Materialize.Icons.Data
power_bank_hit_back :: Number
P purescript-screeps-classy M Screeps.Constants
power_bank_capacity_max :: Int
P purescript-screeps-classy M Screeps.Constants
power_bank_capacity_min :: Int
P purescript-screeps-classy M Screeps.Constants
power_bank_capacity_crit :: Number
P purescript-screeps-classy M Screeps.Constants
power_spawn_energy_ratio :: Int
P purescript-screeps-classy M Screeps.Constants
power_spawn_power_capacity :: Int
P purescript-screeps-classy M Screeps.Constants
power_spawn_energy_capacity :: Int
P purescript-screeps-classy M Screeps.Constants

No further results.