Search results

assure :: forall a e g f. ErrorControl f g e => Monad f => g a -> (a -> Maybe e) -> f a
P purescript-errorcontrol M Error.Control
bind :: forall m a b. Bind m => m a -> (a -> m b) -> m b
P purescript-prelude M Control.Bind
discard :: forall a f b. Discard a => Bind f => f a -> (a -> f b) -> f b
P purescript-prelude M Control.Bind
bind' :: forall v1 v0 m c. HasBind c m => ObjectOf c v0 => ObjectOf c (m v1) => Restrictable Function c => m v0 -> (v0 -> (m v1)) -> m v1
P purescript-subcategory M Control.Subcategory.Functor.HasBind
bind :: forall c b a. HasChain a => a b -> (b -> a c) -> a c

A version of chain with the arguments flipped. This is provided only to support desugaring do notation. It is not recommended to use explicitly.

P purescript-neon M Neon.Helper
fairConjunction :: forall b a m. MonadLogic m => m a -> (a -> m b) -> m b
P purescript-logic M Control.Monad.Logic.Class
hummingbird :: forall m b a. Bind m => m a -> (a -> m b) -> m b

H combinator - hummingbird

BW(BC)

Λ a b c (a → b → a → c) → a → b → c

λ f x y . f x y x

P purescript-birds M Aviary.Birds
when :: forall b a m. MonadLogic m => m a -> (a -> m b) -> m b
P purescript-logic M Control.Monad.Logic.Class
catchError :: forall e m a. MonadError e m => m a -> (e -> m a) -> m a
P purescript-transformers M Control.Monad.Error.Class
controlError :: forall f g e a. ErrorControl f g e => f a -> (e -> g a) -> g a
P purescript-errorcontrol M Error.Control
mapFlipped :: forall f a b. Functor f => f a -> (a -> b) -> f b

mapFlipped is map with its arguments reversed. For example:

[1, 2, 3] <#> \n -> n * n
P purescript-prelude M Data.Functor
flippedMap :: forall f a b. Functor f => f a -> (a -> b) -> f b
P purescript-signal M Signal
delay :: forall m a b. Delay m => a -> (a -> m b) -> m b
P purescript-ffi-simple M FFI.Simple.Functions
fromMaybeS :: forall a f. Selective f => f a -> f (Maybe a) -> f a
P purescript-selective M Control.Selective
fromMaybeS :: forall @f @a. Select f => f a -> f (Maybe a) -> f a

If the second action is Nothing, run and return the first

P purescript-selective-functors M Control.Select
cmapFlipped :: forall a b f. Contravariant f => f a -> (b -> a) -> f b

cmapFlipped is cmap with its arguments reversed.

P purescript-contravariant M Data.Functor.Contravariant
intercept :: forall a e g f. ErrorControl f g e => f a -> (e -> a) -> g a
P purescript-errorcontrol M Error.Control
applyFlipped :: forall a b. a -> (a -> b) -> b

Applies an argument to a function. This is primarily used as the (#) operator, which allows parentheses to be omitted in some cases, or as a natural way to apply a value to a chain of composed functions.

P purescript-prelude M Data.Function
applySecond :: forall a b f. Apply f => f a -> f b -> f b

Combine two effectful actions, keeping only the result of the second.

P purescript-prelude M Control.Apply
voidLeft :: forall f a b. Functor f => f a -> b -> f b

A version of voidRight with its arguments flipped.

P purescript-prelude M Data.Functor
fromMaybe' :: forall a. Maybe a -> a -> a

An infix form of fromMaybe with arguments flipped.

P purescript-errors M Control.Error.Util
mulNat :: forall proxy a b c. ProductNat a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
plus :: forall proxy a b c. SumInt a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Int.Definition
plusNat :: forall proxy a b c. SumNat a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
powNat :: forall proxy a b c. ExponentiationNat a b c => proxy a -> proxy b -> proxy c
> powNat d2 d3
8 -- : NProxy D8

a raised to the power of b a^b = c

P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
prod :: forall proxy a b c. ProductInt a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Int.Definition
divides :: forall a. Divisible a => a -> a -> Maybe a
P purescript-sparse-polynomials M Data.Sparse.Polynomial
sampleOnLeft_ :: forall event a b. IsEvent event => event a -> event b -> event b
P purescript-hyrule M FRP.Event.Class
downcast :: forall ctor from to. ctor -> from -> Maybe to

Attempt to cast to a type given a constructor for it

P purescript-ffi-simple M FFI.Simple.Objects
applySecond :: forall v1 v0 f c. HasApply c f => HasConst c => HasIdentity c => HasMap c f => ObjectOf c v0 => ObjectOf c v1 => ObjectOf c (c v1 v1) => ObjectOf c (c v0 (c v1 v1)) => ObjectOf c (c (c v1 v1) (c v0 (c v1 v1))) => f v0 -> f v1 -> f v1
P purescript-subcategory M Control.Subcategory.Functor.HasApply
concat :: forall xs ys zs lproxy. Concat xs ys zs => lproxy xs -> lproxy ys -> lproxy zs
P purescript-typelevel-lists M Type.Data.List
downcast :: forall ctor from to. ctor -> from -> Maybe to

Attempt to cast to a type given a constructor for it

P purescript-dom-simple M DOM.Simple.Event
drop :: forall n xs ys lproxy iproxy. Drop n xs ys => iproxy n -> lproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
lookup :: forall c k r. Lookup c k r => c -> k -> Maybe r

Given some type and a key on that type, extract some value that corresponds to that key.

P purescript-httpure M HTTPure.Lookup
lookup :: forall c k r. Lookup c k r => c -> k -> Maybe r

Given some type and a key on that type, extract some value that corresponds to that key.

P purescript-httpurple M HTTPurple.Lookup
map :: forall f xs ys fproxy kproxy lproxy. Map f xs ys => fproxy f -> kproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
take :: forall n xs ys lproxy iproxy. Take n xs ys => iproxy n -> lproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
zip :: forall x y z lproxy. Zip x y z => lproxy x -> lproxy y -> lproxy z
P purescript-typelevel-lists M Type.Data.List
getOrAlt :: forall v s r' r l h g f. Alternative h => Cons s v r' r => RowToList r l => RGetOrAlt f g s l r => g s -> f r -> h v
P purescript-struct M Data.Struct.GetOrAlt.GetOrAlt
max :: forall a. PartialOrd a => a -> a -> Maybe a
P purescript-partial-order M Data.Ord.Partial
min :: forall a. PartialOrd a => a -> a -> Maybe a
P purescript-partial-order M Data.Ord.Partial
pMax :: forall a. PartialOrd a => a -> a -> Maybe a
P purescript-higher-order M Data.PartialOrd
pMin :: forall a. PartialOrd a => a -> a -> Maybe a
P purescript-higher-order M Data.PartialOrd
rsingleton :: forall f g s v r. RSingleton f g s => Cons s v () r => Lacks s () => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton.RSingleton
singleton :: forall v s r g f. Cons s v () r => Lacks s () => RSingleton f g s => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton
_call :: forall b a. a -> (a -> b) -> b
P purescript-neon M Neon.Operator
after :: forall k f. Eq k => Foldable f => k -> f k -> Maybe k
P purescript-causal-graphs M Data.Graph.Causal.Utility
always_ :: forall a i. i -> a -> Maybe i
P purescript-spork M Spork.Html.Events
before :: forall k f. Eq k => Foldable f => k -> f k -> Maybe k
P purescript-causal-graphs M Data.Graph.Causal.Utility
bind :: forall a. Semigroup a => a -> (a -> a) -> a
P purescript-qualified-do M QualifiedDo.Semigroup
extract :: forall r x a. TypeEquals r x => r -> (x -> a) -> a
P purescript-eta-conversion M Data.ReaderTEtaConversionTransformer
functorDecorateFlipped :: forall b a f. Functor f => Decorate b a => f a -> b -> f b
P purescript-materialize M Materialize.Markup.Decorate
nmapFlipped :: forall b a fb fa. NestedFunctor fa fb a b => fa -> (a -> b) -> fb
P purescript-nested-functor M Data.Functor.Nested

t

t :: forall b a. a -> (a -> b) -> b

Reverse application which is probably exist inside Lens module

P purescript-birds M Aviary.Birds

t

t :: forall b a. a -> (a -> b) -> b
P purescript-combinators M Data.Combinators
thrush :: forall b a. a -> (a -> b) -> b

T combinator - thrush

CI

Λ a b . a → (a → b) → b

λ x f . f x

P purescript-birds M Aviary.Birds
applyFirst :: forall a b f. Apply f => f a -> f b -> f a

Combine two effectful actions, keeping only the result of the first.

P purescript-prelude M Control.Apply
alt :: forall f a. Alt f => f a -> f a -> f a
P purescript-control M Control.Alt
optional :: forall f a. Alt f => Applicative f => f a -> f (Maybe a)

One or none.

optional empty = pure Nothing

The behaviour of optional (pure x) depends on whether the Alt instance satisfy the left catch law (pure a <|> b = pure a).

Either e does:

optional (Right x) = Right (Just x)

But Array does not:

optional [x] = [Just x, Nothing]
P purescript-maybe M Data.Maybe
choose :: forall m a. MonadGen m => m a -> m a -> m a

Creates a generator that outputs a value chosen from one of two existing existing generators with even probability.

P purescript-gen M Control.Monad.Gen
genMaybe :: forall m a. MonadGen m => m a -> m (Maybe a)

Creates a generator that outputs Maybe values, choosing a value from another generator for the inner value. The generator has a 75% chance of returning a Just over a Nothing.

P purescript-gen M Control.Monad.Gen.Common
optional :: forall f a. Alt f => Applicative f => f a -> f (Maybe a)
P purescript-optparse M Options.Applicative.Types
sampleOnRight_ :: forall event a b. IsEvent event => event a -> event b -> event a

Create an Event which samples the latest values from the first event at the times when the second event fires, ignoring the values produced by the second event.

P purescript-hyrule M FRP.Event.Class
sampleOn_ :: forall b a event. IsEvent event => event a -> event b -> event a

Create an Event which samples the latest values from the first event at the times when the second event fires, ignoring the values produced by the second event.

P purescript-event M FRP.Event.Class
applyFirst :: forall v1 v0 f c. HasApply c f => HasConst c => HasMap c f => ObjectOf c v0 => ObjectOf c v1 => ObjectOf c (c v1 v0) => f v0 -> f v1 -> f v0
P purescript-subcategory M Control.Subcategory.Functor.HasApply
flipScalarMul :: forall k f. VectorField f k => f k -> k -> f k
P purescript-vectorfield M Data.VectorField
max1 :: forall f a. Ord1 f => f a -> f a -> f a
P purescript-higher-order M Data.Operator.Ord
min1 :: forall f a. Ord1 f => f a -> f a -> f a
P purescript-higher-order M Data.Operator.Ord
onIntegrityError :: forall m a. MonadError PGError m => m a -> m a -> m a
P purescript-postgresql-client M Database.PostgreSQL.PG
alt :: forall f a. Alternative f => f a -> f a -> f a
P purescript-invertible-syntax M Text.Syntax.Classes
dappend :: forall cnt a. Diff cnt => cnt a -> cnt a -> cnt a
P purescript-difference-containers M Containers.Difference
fromFoldableL :: forall a c f. Foldable f => Consable c => c a -> f a -> c a

Conversion from Foldable to Consable using foldl.

fromFoldableL [] [1,2,3,4]  == [4,3,2,1]
fromFoldableL [0] [1,2,3,4] == [4,3,2,1,0]
P purescript-consable M Data.Consable
fromFoldableR :: forall a c f. Foldable f => Consable c => c a -> f a -> c a

Conversion from Foldable to Consable using foldr.

fromFoldableR [] [1,2,3,4]  == [1,2,3,4]
fromFoldableR [5] [1,2,3,4] == [1,2,3,4,5]
P purescript-consable M Data.Consable
interleave :: forall m a. MonadLogic m => m a -> m a -> m a
P purescript-logic M Control.Monad.Logic.Class
optionMaybe :: forall a m. Alternative m => m a -> m (Maybe a)
P purescript-parsers M Text.Parsing.Combinators
snoc :: forall f a. Container f => f a -> a -> f a
P purescript-logoot-core M Data.Container
voidRight :: forall f a b. Functor f => a -> f b -> f a

Ignore the return value of a computation, using the specified return value instead.

P purescript-prelude M Data.Functor
fromJust :: forall a. Partial => Maybe a -> a

A partial function that extracts the value from the Just data constructor. Passing Nothing to fromJust will throw an error at runtime.

P purescript-maybe M Data.Maybe
fromMaybe :: forall f a. Unfoldable f => Maybe a -> f a

Convert a Maybe to any Unfoldable, such as lists or arrays.

fromMaybe (Nothing :: Maybe Int) == []
fromMaybe (Just 1) == [1]
P purescript-unfoldable M Data.Unfoldable
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u a

Returns a contiguous sequence of elements from the first value to the second value (inclusive).

enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']

The example shows Array return values, but the result can be any type with an Unfoldable1 instance.

P purescript-enums M Data.Enum
seek :: forall s a w. ComonadStore s w => s -> w a -> w a

Reposition the focus at the specified position.

P purescript-transformers M Control.Comonad.Store.Class
filled :: forall m a style. MonadCanvasAction m => CanvasStyle style => style -> m a -> m a

Run a MonadCanvasAction with the given fillStyle, resetting it to the previous value after

P purescript-canvas-action M Graphics.CanvasAction
putCtx :: forall a html ctx. Ctx ctx html => ctx -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Ctx.Class
stroked :: forall m a style. MonadCanvasAction m => CanvasStyle style => style -> m a -> m a

Run a MonadCanvasAction with the given strokeStyle, resetting it to the previous value after

P purescript-canvas-action M Graphics.CanvasAction
tellAccum :: forall acc html a. TellAccum acc html => acc -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Accum.Class
get :: forall v s r' r l g f. Cons s v r' r => RGet f g s l r => RowToList r l => g s -> f r -> v
P purescript-struct M Data.Struct.Get.Get
match :: forall v r1 r0 l1 l0 g f. RMatch f g v l0 r0 l1 r1 => RowToList r0 l0 => RowToList r1 l1 => f r0 -> g r1 -> v
P purescript-struct M Data.Struct.Match.Match
scalarMul :: forall f k. VectorField f k => k -> f k -> f k
  • ∀v in V: one * v == v
  • ∀a b in K, v in V: a * (b .* v) = (a * b) .* v
  • ∀a b in K, v in V:
    • a .* (u + v) = a .* u + a .* v
    • (a + b) .* v = a .* v + b .* v
P purescript-vectorfield M Data.VectorField
cons :: forall t a. Consable t => a -> t a -> t a
P purescript-consable M Data.Consable
cons :: forall f a. Container f => a -> f a -> f a
P purescript-logoot-core M Data.Container
convertOption :: forall field from to sproxy. ConvertOption field from to => sproxy field -> from -> to
P purescript-web-fetch M Web.Fetch.Request
fromJust :: forall a. Maybe a -> a
P purescript-cypress M Cypress.Actions
fromJust' :: forall a. Maybe a -> a

The partial and unsafe version of fromJust.

P purescript-sudoku M Sudoku.Util
functorDecorate :: forall b a f. Functor f => Decorate a b => a -> f b -> f a
P purescript-materialize M Materialize.Markup.Decorate
index :: forall f a b. Representable f a => f b -> (a -> b)
P purescript-functor-vector M Data.Functor.Representable
insert :: forall f a. Container f => Ord a => a -> f a -> f a
P purescript-logoot-core M Data.Container
invokeAction :: forall m res args ctrl act. RemoteAction act ctrl args res => MonadReader Visualforce m => MonadAff m => MonadError RemoteActionError m => IsSymbol ctrl => Encode args => Decode res => act -> args -> m res

Function that invoke the action defined by referring to contraints which holds details about the correct controller to invoke. Example:

data PCMRequests = ..

data CreatePCMRequests = CreatePCMRequests

instance remoteActionCreatePCMs :: RemoteAction CreatePCMRequests "PCMMassController.createRecords" PCMRequests Unit

createPCMRequest :: Visualforce -> PCMRequests -> Aff (Either RemoteActionError Unit)
createPCMRequest vf rec =  runReaderT (runExceptT $ invokeAction CreatePCMRequests rec) vf
P purescript-sforce-remote-action M Salesforce.RemoteAction
option :: forall a m. Alternative m => a -> m a -> m a
P purescript-parsers M Text.Parsing.Combinators
replaceInArray :: forall a f. HasUuid a => Functor f => a -> f a -> f a
P purescript-liminal M Classes.HasUuid
splice :: forall f t. Corecursive t (SqlF f) => Maybe t -> t
P purescript-sql-squared M SqlSquared.Constructors
toDefault :: forall a. Default a => Maybe a -> a

Turns Nothing into a “default” (zero) value.

The Protobuf spec requires that a no presence field set to its “default” (zero) value must not be serialized to the wire.

When receiving messages we can use this function to interpret a missing no presence field as a “default” value.

P purescript-protobuf M Protobuf.Internal.Common
unsafeMaybeToNullableAttr :: forall a. Maybe a -> a

WARNING: This is for JS interop -- don't use this to unwrap Maybes!

Unsafely nulls out a value so the resulting html attributes are less noisy Ex: R.input { type: unsafeMaybeToNullableAttr Nothing } avoids rendering the type attribute while still validating the type of the Maybe's content matches the type of the DOM field. It's only slightly safer than using unsafeCreateDOMComponent to avoid DOM type checking entirely.

P purescript-lumi-components M Lumi.Components
duplicate :: forall a w. Extend w => w a -> w (w a)

Duplicate a comonadic context.

duplicate is dual to Control.Bind.join.

P purescript-control M Control.Extend
unfoldable :: forall m f a. MonadRec m => MonadGen m => Unfoldable f => m a -> m (f a)

Creates a generator that produces unfoldable structures based on an existing generator for the elements.

The size of the unfoldable will be determined by the current size state for the generator. To generate an unfoldable structure of a particular size, use the resize function from the MonadGen class first.

P purescript-gen M Control.Monad.Gen
unwrapCofree :: forall f w a. ComonadCofree f w => w a -> f (w a)
P purescript-free M Control.Comonad.Cofree.Class
fork :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
suspend :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
toBase :: forall b m a. MonadUnlift b m => m a -> m (b a)

Run the given action inside the base monad b.

P purescript-unlift M Control.Monad.Unlift
split :: forall f a. Applicative f => f a -> f (f a)
P purescript-merge M Data.Merge
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
extract :: forall w a. Comonad w => w a -> a
P purescript-control M Control.Comonad
and :: forall a f. Foldable f => HeytingAlgebra a => f a -> a

The conjunction of all the values in a data structure. When specialized to Boolean, this function will test whether all of the values in a data structure are true.

P purescript-foldable-traversable M Data.Foldable
fold :: forall f m. Foldable f => Monoid m => f m -> m

Fold a data structure, accumulating values in some Monoid.

P purescript-foldable-traversable M Data.Foldable
fold1 :: forall t m. Foldable1 t => Semigroup m => t m -> m

Fold a data structure, accumulating values in some Semigroup.

P purescript-foldable-traversable M Data.Semigroup.Foldable
intercalate :: forall f m. Foldable f => Monoid m => m -> f m -> m

Fold a data structure, accumulating values in some Monoid, combining adjacent elements using the specified separator.

For example:

> intercalate ", " ["Lorem", "ipsum", "dolor"]
= "Lorem, ipsum, dolor"

> intercalate "*" ["a", "b", "c"]
= "a*b*c"

> intercalate [1] [[2, 3], [4, 5], [6, 7]]
= [2, 3, 1, 4, 5, 1, 6, 7]
P purescript-foldable-traversable M Data.Foldable
intercalate :: forall f m. Foldable1 f => Semigroup m => m -> f m -> m

Fold a data structure using a Semigroup instance, combining adjacent elements using the specified separator.

P purescript-foldable-traversable M Data.Semigroup.Foldable
length :: forall a b f. Foldable f => Semiring b => f a -> b

Returns the size/length of a finite structure. Optimized for structures that are similar to cons-lists, because there is no general way to do better.

P purescript-foldable-traversable M Data.Foldable
maximum :: forall f a. Ord a => Foldable1 f => f a -> a
P purescript-foldable-traversable M Data.Semigroup.Foldable
minimum :: forall f a. Ord a => Foldable1 f => f a -> a
P purescript-foldable-traversable M Data.Semigroup.Foldable
or :: forall a f. Foldable f => HeytingAlgebra a => f a -> a

The disjunction of all the values in a data structure. When specialized to Boolean, this function will test whether any of the values in a data structure is true.

P purescript-foldable-traversable M Data.Foldable
product :: forall a f. Foldable f => Semiring a => f a -> a

Find the product of the numeric values in a data structure.

P purescript-foldable-traversable M Data.Foldable
sum :: forall a f. Foldable f => Semiring a => f a -> a

Find the sum of the numeric values in a data structure.

P purescript-foldable-traversable M Data.Foldable
surround :: forall f m. Foldable f => Semigroup m => m -> f m -> m

fold but with each element surrounded by some fixed value.

For example:

> surround "*" []
= "*"

> surround "*" ["1"]
= "*1*"

> surround "*" ["1", "2"]
= "*1*2*"

> surround "*" ["1", "2", "3"]
= "*1*2*3*"
P purescript-foldable-traversable M Data.Foldable
forever :: forall m a b. MonadRec m => m a -> m b

forever runs an action indefinitely, using the MonadRec instance to ensure constant stack usage.

For example:

main = forever $ trace "Hello, World!"
P purescript-tailrec M Control.Monad.Rec.Class
proof :: forall a b p. TypeEquals a b => p a -> p b
P purescript-type-equality M Type.Equality
elements :: forall m f a. MonadGen m => Foldable1 f => f a -> m a

Creates a generator that outputs a value chosen from a selection with uniform probability.

P purescript-gen M Control.Monad.Gen
coerce :: forall f a b. Contravariant f => Functor f => f a -> f b
P purescript-contravariant M Data.Functor.Contravariant
ask :: forall e w a. ComonadAsk e w => w a -> e
P purescript-transformers M Control.Comonad.Env.Class
peek :: forall s w a. ComonadStore s w => s -> w a -> a
P purescript-transformers M Control.Comonad.Store.Class
pos :: forall s w a. ComonadStore s w => w a -> s
P purescript-transformers M Control.Comonad.Store.Class
track :: forall t w a. ComonadTraced t w => t -> w a -> a
P purescript-transformers M Control.Comonad.Traced.Class
inj :: forall f g a. Inject f g => f a -> g a
P purescript-functors M Data.Functor.Coproduct.Inject
sans :: forall m a b. At m a b => a -> m -> m
P purescript-profunctor-lenses M Data.Lens.At
join :: forall f m a. MonadFork f m => f a -> m a
P purescript-fork M Control.Monad.Fork.Class
uninterruptible :: forall e f m a. MonadBracket e f m => m a -> m a
P purescript-fork M Control.Monad.Fork.Class
add :: forall x y z. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b1 b2 b3. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall x y z. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b1 b2 b3. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall x y z. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b1 b2 b3. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall x y z. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall x y z. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall x y r. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall x y z. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b1 b2 b3. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall x y z. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall x y r. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b1 b2 b3. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
cleared :: forall f a b. Filterable f => f a -> f b

Filter out all values.

P purescript-filterable M Data.Filterable
hmap :: forall f a b. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall f a b. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall f a b. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
resulting :: forall f acc x. Resulting f acc x => f -> acc -> x
P purescript-heterogeneous M Heterogeneous.Variadic
variadic :: forall f acc args. Variadic f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
variadicWithIndex :: forall f acc args. VariadicWithIndex f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
getSingleton :: forall f a. SingletonFunctor f => f a -> a
P purescript-monad-control M Data.Functor.Singleton
liftBase :: forall b m a. MonadBase b m => b a -> m a
P purescript-monad-control M Control.Monad.Base
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
convertOptions :: forall t i o. ConvertOptions t i o => t -> i -> o
P purescript-convertable-options M ConvertableOptions
defaults :: forall defaults provided all. Defaults defaults provided all => defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
length :: forall sproxy proxy a b. Length a b => sproxy a -> proxy b
P purescript-typelevel-peano M Type.Data.Peano.Nat.Parse
parseInt :: forall sproxy proxy sym a. ParseInt sym a => sproxy sym -> proxy a

parse Int a Value-Level

parseInt (Proxy  :: _ "-1337") ~> N1337
parseInt (SProxy :: _ "-1337") ~> N1337
    -- N1137 would be type alias for Neg (Succ^1337 Z)
P purescript-typelevel-peano M Type.Data.Peano.Int.Parse
parseNat :: forall sproxy proxy sym a. ParseNat sym a => sproxy sym -> proxy a

value-level parse of number

parseNat (Proxy  "10") ~> D10
parseNat (SProxy "10") ~> D10
P purescript-typelevel-peano M Type.Data.Peano.Nat.Parse
colambek :: forall t f. Recursive t f => Corecursive t f => f t -> t
P purescript-matryoshka M Matryoshka.Unfold
embed :: forall t f. Corecursive t f => f t -> t
P purescript-matryoshka M Matryoshka.Class.Corecursive
folded :: forall event a. IsEvent event => Monoid a => event a -> event a

Combine subsequent events using a Monoid.

P purescript-hyrule M FRP.Event.Class
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
bindTo :: forall f o. f -> o -> f
P purescript-ffi-simple M FFI.Simple.Functions
defaultUndef :: forall a. a -> a -> a
P purescript-ffi-simple M FFI.Simple.Undef
folded :: forall a event. IsEvent event => Monoid a => event a -> event a

Combine subsequent events using a Monoid.

P purescript-event M FRP.Event.Class
new :: forall f a o. f -> a -> o

Call new on the function with an array or pseudoarray of arguments

P purescript-ffi-simple M FFI.Simple.Functions
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
mapProduct :: forall mp a b. MapProduct mp a b => mp -> a -> b
P purescript-classless M Classless
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
sort :: forall f a. Functor f => Foldable f => Unfoldable f => Ord a => f a -> f a

Sort any structure (which has Foldable, Unfoldable, and Functor instances) by converting to an OrdSeq and back again. I am fairly sure this is usually O(n*log(n)), although of course this depends on the Unfoldable and Foldable instances.

P purescript-sequences M Data.Sequence.Ordered
act :: forall m s. Action m s => m -> s -> s

Convert a value of type @m@ to an action on @s@ values.

P purescript-monoid-extras M Data.Monoid.Action
askRunInBase :: forall b m a. MonadUnlift b m => m (m a -> b a)

A monomorphic version of askUnlift which can be more convenient when you only want to use the resulting runner function once with a concrete type.

If you run into type issues using this, try using askUnlit instead.

P purescript-unlift M Control.Monad.Unlift
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpurple M HTTPurple.Lookup
buildLeaf :: forall e f p v. ElementBuilder e f p v => e -> f p -> v
P purescript-concur-core M Concur.Core.ElementBuilder
init :: forall xs ys lproxy. Init xs ys => lproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
length :: forall xs r lproxy iproxy. Length xs r => lproxy xs -> iproxy r
P purescript-typelevel-lists M Type.Data.List
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-lattice M Data.Lattice
pathAppend :: forall m. XPathLike m => m -> m -> m

Put a path seperator between two XPaths and return the resulting XPath.

P purescript-xpath-like M Data.XPath
pathAppendNSx :: forall m. XPathLike m => m -> m -> m

Useful variant of pathAppend needed for some XPath implementations; insert a separator with a dummy namespace ("x") for the second XPath fragment. For example: root /? "record" /? "identifier" == "/x:record/x:identifier".

P purescript-xpath-like M Data.XPath
restoreAfter :: forall m a. MonadCanvasAction m => m a -> m a

Runs save, then the provided action, then restore

P purescript-canvas-action M Graphics.CanvasAction
setCtx :: forall props' props ctx. WithContextProps props' props ctx => ctx -> props' -> props
P purescript-react-hocs M ReactHocs.Class
adjacentSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
and :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
child :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
dbg :: forall s a. Show s => s -> a -> a
P purescript-binary M Debug
descendant :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
diff :: forall a d. Diff a d => a -> a -> d
P purescript-incremental-functions M Data.Incremental
from1 :: forall f rep a. Generic1 f rep => f a -> rep
P purescript-higher-order M Data.Operator.Generic.Rep
generalSibling :: forall a b c. IsExtensibleSelector a => ToVal a => Combine b c => a -> b -> c
P purescript-tecton M Tecton.Internal
join :: forall a. JoinSemilattice a => a -> a -> a
P purescript-colehaus-lattice M Data.Lattice
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
meet :: forall a. MeetSemilattice a => a -> a -> a
P purescript-colehaus-lattice M Data.Lattice
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-ring-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-ring-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-ring-modules M Data.Ring.Module
nand :: forall α. HeytingAlgebra α => α -> α -> α
P purescript-unicode-prelude M Data.HeytingAlgebra.Unicode
nor :: forall α. HeytingAlgebra α => α -> α -> α
P purescript-unicode-prelude M Data.HeytingAlgebra.Unicode
or :: forall a. Binary a => a -> a -> a
P purescript-binary M Data.Binary
patch :: forall a d. Patch a d => a -> d -> a
P purescript-incremental-functions M Data.Incremental
pursxStringAnonymous :: forall accumulator next res. PursxStringAnonymous accumulator next res => accumulator -> next -> res
P purescript-deku M Deku.Pursx.Anonymous
pursxValAnonymous :: forall accumulator next res. PursxValAnonymous accumulator next res => accumulator -> next -> res
P purescript-deku M Deku.Pursx.Anonymous
reciprocal :: forall n n1 n2 a r. Add n2 1 n1 => Add n1 1 n => Arity a n => Divisible r => Eq r => EuclideanRing r => Leadable r => Ord r => Pad n2 (Polynomial r) a => Peel r r => Unpad n2 (Polynomial r) a => a -> a -> a

Computes the reciprocal of the first polynomial in the extension whose minimal polynomial is provided by the second polynomial

P purescript-numberfield M Data.Algebraic.NumberField
set :: forall s t a b @sym lenses. IsSymbol sym => ParseSymbol sym lenses => ConstructBarlow lenses Function s t a b => b -> s -> t
P purescript-barlow-lens M Data.Lens.Barlow.Helpers

No further results.