# Search results

### pow

``pow :: Int -> Int -> Int``

Raise an Int to the power of another Int.

P purescript-integers M Data.Int

### pow

``pow :: Number -> Number -> Number``

Return the first argument exponentiated to the power of the second argument.

P purescript-math M Math

### pow

``pow :: Number -> Number -> Number``

Return the first argument exponentiated to the power of the second argument.

``````> pow 3.0 2.0
9.0
> sqrt 42.0 == pow 42.0 0.5
true
``````
P purescript-numbers M Data.Number

### pow

``pow :: UInt -> UInt -> UInt``

Raises the first argument to the power of the second argument (the exponent).

``````> pow (fromInt 2) (fromInt 3)
8u
``````
P purescript-uint M Data.UInt

### pow

``pow :: BigInt -> BigInt -> BigInt``

Exponentiation for `BigInt`. If the exponent is less than 0, `pow` returns 0. Also, `pow zero zero == one`.

P purescript-bigints M Data.BigInt

### pow

``pow :: BigInt -> BigInt -> BigInt``

Raise a BigInt to the power of another BigInt.

``````pow (fromInt 2) (fromInt 3) -- 2^3
``````
P purescript-js-bigints M JS.BigInt

### pow

``pow :: Cartesian Number -> Number -> Cartesian Number``

Real power of a complex

P purescript-cartesian M Data.Complex

### pow

``pow :: HugeNum -> Int -> HugeNum``

Raise a HugeNum to an integer power.

P purescript-precise M Data.HugeNum

### pow

``pow :: Decimal -> Decimal -> Decimal``

Exponentiation for `Decimal`.

P purescript-decimals M Data.Decimal

### pow

``pow :: Int53 -> Int53 -> Int53``

Raises the first argument to the power of the second argument (the exponent).

If the exponent is less than 0, then `pow` returns 0.

``````pow (fromInt 2) (fromInt 3) == (fromInt 8)
pow (fromInt 2) (fromInt 0) == (fromInt 1)
pow (fromInt 0) (fromInt 0) == (fromInt 1)
pow (fromInt 2) (fromInt (-2)) == (fromInt 0)
``````
P purescript-int-53 M Data.Int53

### pow

``pow :: forall a. Semiring a => a -> Int -> a``

Integer power

P purescript-sparse-polynomials M Data.Sparse.Polynomial

### pow

``pow :: BigNumber -> BigNumber -> BigNumber``
P purescript-bignumber M Data.BigNumber

### pow

``pow :: BigNumber -> Int -> BigNumber``

Exponentiate a `BigNumber`

P purescript-eth-core M Network.Ethereum.Core.BigNumber

### pow

``pow :: forall a. Eq a => Semiring a => Square a -> Int -> Square a``

Integer power of a square matrix

P purescript-sparse-matrices M Data.Sparse.Matrix

### pow

``pow :: BigInt -> BigInt -> BigInt``
P purescript-big-integer M Data.Int.Big

### pow

``pow :: Cartesian Number -> Number -> Cartesian Number``

Real power of a complex

P purescript-complex M Data.Complex

### pow

``pow :: forall k. NumCat k => k (Number /\ Number) Number``
P purescript-dual-numbers M Data.Number.Dual

### pow

``pow :: Quat -> Number -> Quat``

Calculate the scalar power of a unit quaternion.

P purescript-gl-matrix M GLMatrix.Quat

### Pow

``Pow :: NumberValue -> NumberValue -> NumberValue``
P purescript-math-equation M Math.Equation

### pow

``pow :: P5 -> Number -> Number -> Number``

p5js.org documentation

P purescript-p5 M P5.Math.Calculation

### pow

``pow :: Quantity -> Decimal -> Quantity``

Raise a quantity to a given power.

P purescript-quantities M Data.Quantity

### Pow

``Pow :: BinaryOperator``
P purescript-sql-squared M SqlSquared.Signature.BinaryOperator

### pow

``pow :: forall a b c r. Arith a b c r => a -> b -> c``
P purescript-z3 M Z3

### power

``power :: forall m. Monoid m => m -> Int -> m``

Append a value to itself a certain number of times. For the `Multiplicative` type, and for a non-negative power, this is the same as normal number exponentiation.

If the second argument is negative this function will return `mempty` (unlike normal number exponentiation). The `Monoid` constraint alone is not enough to write a `power` function with the property that ```power x n``` cancels with `power x (-n)`, i.e. `power x n <> power x (-n) = mempty`. For that, we would additionally need the ability to invert elements, i.e. a Group.

``````power [1,2] 3    == [1,2,1,2,1,2]
power [1,2] 1    == [1,2]
power [1,2] 0    == []
power [1,2] (-3) == []
``````
P purescript-prelude M Data.Monoid

### power

``power :: forall g. Group g => g -> Int -> g``

Append a value (or its inverse) to itself a certain number of times.

For the `Additive Int` type, this is the same as multiplication.

P purescript-group M Data.Group

### power

``power :: Icons``
P purescript-materialize M Materialize.Icons.Data

### power

``power :: forall a. HasPower a => a -> a -> a``
P purescript-neon M Neon.Class.HasPower

### power

``power :: DerivedUnit -> Number -> DerivedUnit``

Raise a unit to the given power.

P purescript-quantities M Data.Units

### power

``power :: PowerBank -> Int``
P purescript-screeps-classy M Screeps.PowerBank

### power

``power :: PowerSpawn -> Int``
P purescript-screeps-classy M Screeps.PowerSpawn

### power

``power :: BigNumState -> BigNumState -> BigNumState``
P purescript-sjcl M Crypto.SJCL.BigNum

### powNat

``powNat :: forall proxy a b c. ExponentiationNat a b c => proxy a -> proxy b -> proxy c``
``````> powNat d2 d3
8 -- : NProxy D8
``````

a raised to the power of b `a^b = c`

P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition

### powermod

``powermod :: BigNumState -> BigNumState -> BigNumState -> BigNumState``
P purescript-sjcl M Crypto.SJCL.BigNum

### powerSet

``powerSet :: forall a. Ord a => Set a -> Set (Set a)``
P purescript-causal-graphs M Data.Graph.Causal.Utility

### PowerBank

P purescript-screeps-classy M Screeps.PowerBank

### powderBlue

``powderBlue :: Color``

#B0E0E6

P purescript-emo8 M Emo8.Data.Color

### powderblue

``powderblue :: Color``
P purescript-reactnative M ReactNative.PropTypes.Color

### powerInput

``powerInput :: Icons``
P purescript-materialize M Materialize.Icons.Data

### PowerScale

P purescript-d3 M Graphics.D3.Scale

### powerScale

``powerScale :: forall r. D3Eff (PowerScale Number r)``
P purescript-d3 M Graphics.D3.Scale

### PowerSpawn

P purescript-screeps-classy M Screeps.PowerSpawn

### powerCapacity

``powerCapacity :: PowerSpawn -> Int``
P purescript-screeps-classy M Screeps.PowerSpawn

### powerBankHasId

P purescript-screeps-classy M Screeps.PowerBank

### power_bank_hits

``power_bank_hits :: Int``
P purescript-screeps-classy M Screeps.Constants

### powerSpawnHasId

P purescript-screeps-classy M Screeps.PowerSpawn

### powerAssociative

``powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> Boolean``

A magma M is power-associative if the subalgebra generated by any element is associative.

∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x

P purescript-colehaus-properties M Control.Algebra.Properties

### powerAssociative

``powerAssociative :: forall a. Eq a => (a -> a -> a) -> a -> Boolean``

A magma M is power-associative if the subalgebra generated by any element is associative.

∀ m n. m,n ∈ ℤ+ x^m • x^n = x^(m + n) where x^m • x^n is defined recursively via x^1 = x, x^(n + 1) = x^n • x

P purescript-properties M Control.Algebra.Properties

### power_bank_decay

``power_bank_decay :: Int``
P purescript-screeps-classy M Screeps.Constants

### power_spawn_hits

``power_spawn_hits :: Int``
P purescript-screeps-classy M Screeps.Constants

### powerSettingsNew

``powerSettingsNew :: Icons``
P purescript-materialize M Materialize.Icons.Data