Data.CommutativeRing
- Package
- purescript-prelude
- Repository
- purescript/purescript-prelude
#CommutativeRing Source
class (Ring a) <= CommutativeRing a
The CommutativeRing
class is for rings where multiplication is
commutative.
Instances must satisfy the following law in addition to the Ring
laws:
- Commutative multiplication:
a * b = b * a
Instances
CommutativeRing Int
CommutativeRing Number
CommutativeRing Unit
(CommutativeRing b) => CommutativeRing (a -> b)
(RowToList row list, CommutativeRingRecord list row row) => CommutativeRing (Record row)
#CommutativeRingRecord Source
class (RingRecord rowlist row subrow) <= CommutativeRingRecord rowlist row subrow | rowlist -> subrow
A class for records where all fields have CommutativeRing
instances, used
to implement the CommutativeRing
instance for records.
Instances
CommutativeRingRecord Nil row ()
(IsSymbol key, Cons key focus subrowTail subrow, CommutativeRingRecord rowlistTail row subrowTail, CommutativeRing focus) => CommutativeRingRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.Ring
#Ring Source
#RingRecord Source
class (SemiringRecord rowlist row subrow) <= RingRecord rowlist row subrow | rowlist -> subrow
A class for records where all fields have Ring
instances, used to
implement the Ring
instance for records.
Instances
RingRecord Nil row ()
(IsSymbol key, Cons key focus subrowTail subrow, RingRecord rowlistTail row subrowTail, Ring focus) => RingRecord (Cons key focus rowlistTail) row subrow
Re-exports from Data.Semiring
#Semiring Source
class Semiring a where
The Semiring
class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c)
- Identity:
zero + a = a + zero = a
- Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c)
- Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c)
- Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number
and Int
types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number
, the presence of NaN
and
Infinity
values. The behaviour is unspecified in these cases.
Members
Instances
- Modules
- Control.
Applicative - Control.
Apply - Control.
Bind - Control.
Category - Control.
Monad - Control.
Semigroupoid - Data.
Boolean - Data.
BooleanAlgebra - Data.
Bounded - Data.
CommutativeRing - Data.
DivisionRing - Data.
Eq - Data.
EuclideanRing - Data.
Field - Data.
Function - Data.
Functor - Data.
HeytingAlgebra - Data.
Monoid - Data.
Monoid. Additive - Data.
Monoid. Conj - Data.
Monoid. Disj - Data.
Monoid. Dual - Data.
Monoid. Endo - Data.
Monoid. Multiplicative - Data.
NaturalTransformation - Data.
Ord - Data.
Ord. Unsafe - Data.
Ordering - Data.
Ring - Data.
Semigroup - Data.
Semigroup. First - Data.
Semigroup. Last - Data.
Semiring - Data.
Show - Data.
Symbol - Data.
Unit - Data.
Void - Prelude
- Record.
Unsafe - Type.
Data. Row - Type.
Data. RowList