Search results

traverse :: forall t a b m. Traversable t => Applicative m => (a -> m b) -> t a -> m (t b)
P purescript-foldable-traversable M Data.Traversable
traverse1 :: forall t a b f. Traversable1 t => Apply f => (a -> f b) -> t a -> f (t b)
P purescript-foldable-traversable M Data.Semigroup.Traversable
traverse1Default :: forall t a b m. Traversable1 t => Apply m => (a -> m b) -> t a -> m (t b)

A default implementation of traverse1 using sequence1.

P purescript-foldable-traversable M Data.Semigroup.Traversable
traverseDefault :: forall t a b m. Traversable t => Applicative m => (a -> m b) -> t a -> m (t b)

A default implementation of traverse using sequence and map.

P purescript-foldable-traversable M Data.Traversable
traverseDefault :: forall i t a b m. TraversableWithIndex i t => Applicative m => (a -> m b) -> t a -> m (t b)

A default implementation of traverse in terms of traverseWithIndex

P purescript-foldable-traversable M Data.TraversableWithIndex
collect :: forall f a b g. Distributive f => Functor g => (a -> f b) -> g a -> f (g b)
P purescript-distributive M Data.Distributive
collectDefault :: forall a b f g. Distributive f => Functor g => (a -> f b) -> g a -> f (g b)

A default implementation of collect, based on distribute.

P purescript-distributive M Data.Distributive
parTraverse :: forall f m t a b. Parallel f m => Applicative f => Traversable t => (a -> m b) -> t a -> m (t b)

Traverse a collection in parallel.

P purescript-parallel M Control.Parallel
crosswalk :: forall f t a b. Crosswalk f => Alignable t => (a -> t b) -> f a -> t (f b)
P purescript-these M Data.Align
traverseByWither :: forall t m a b. Witherable t => Applicative m => (a -> m b) -> t a -> m (t b)

A default implementation of traverse given a Witherable.

P purescript-filterable M Data.Witherable
traverse :: forall m p q a b. Dissect p q => MonadRec m => (a -> m b) -> p a -> m (p b)

A tail-recursive traverse operation, implemented in terms of Dissect.

Derived from: https://blog.functorial.com/posts/2017-06-18-Stack-Safe-Traversals-via-Dissection.html

P purescript-dissect M Dissect.Class
traverse :: forall t m b a. HasTraverse t => HasApply m => HasMap m => HasPure m => (a -> m b) -> t a -> m (t b)
P purescript-neon M Neon.Class.HasTraverse
oneOfMap :: forall f g a b. Foldable f => Plus g => (a -> g b) -> f a -> g b

Folds a structure into some Plus.

P purescript-foldable-traversable M Data.Foldable
parOneOfMap :: forall a b t m f. Parallel f m => Alternative f => Foldable t => Functor t => (a -> m b) -> t a -> m b

Race a collection in parallel while mapping to some effect.

P purescript-parallel M Control.Parallel
bindFlipped :: forall m a b. Bind m => (a -> m b) -> m a -> m b

bindFlipped is bind with its arguments reversed. For example:

print =<< random
P purescript-prelude M Control.Bind
chain :: forall a c b. HasChain a => (b -> a c) -> a b -> a c
P purescript-neon M Neon.Class.HasChain
experiment :: forall f a w s. ComonadStore s w => Functor f => (s -> f s) -> w a -> f a

Extract a collection of values from positions which depend on the current position.

P purescript-transformers M Control.Comonad.Store.Class
iterateM :: forall b a m. Monad m => (a -> m a) -> m a -> m b
P purescript-game M Game.Util
oneOfMap :: forall f a b s. Convert s (Statements a) => Plus f => (a -> f b) -> s -> f b
P purescript-qualified-do M QualifiedDo.OneOfMap
parOneOfMap :: forall m f a b s. Convert s (Statements a) => Parallel f m => Alternative f => (a -> m b) -> s -> m b
P purescript-qualified-do M QualifiedDo.ParOneOfMap
liftA1 :: forall f a b. Applicative f => (a -> b) -> f a -> f b

liftA1 provides a default implementation of (<$>) for any Applicative functor, without using (<$>) as provided by the Functor-Applicative superclass relationship.

liftA1 can therefore be used to write Functor instances as follows:

instance functorF :: Functor F where
  map = liftA1
P purescript-prelude M Control.Applicative
liftM1 :: forall m a b. Monad m => (a -> b) -> m a -> m b

liftM1 provides a default implementation of (<$>) for any Monad, without using (<$>) as provided by the Functor-Monad superclass relationship.

liftM1 can therefore be used to write Functor instances as follows:

instance functorF :: Functor F where
  map = liftM1
P purescript-prelude M Control.Monad
map :: forall f a b. Functor f => (a -> b) -> f a -> f b
P purescript-prelude M Data.Functor
mapDefault :: forall i f a b. FunctorWithIndex i f => (a -> b) -> f a -> f b

A default implementation of Functor's map in terms of mapWithIndex

P purescript-foldable-traversable M Data.FunctorWithIndex
squigglyMap :: forall f a b. Functor f => (a -> b) -> f a -> f b
P purescript-signal M Signal
transCataTM :: forall t f m. Recursive t f => Corecursive t f => Monad m => Traversable f => (t -> m t) -> t -> m t
P purescript-matryoshka M Matryoshka.Fold
map :: forall p q a b. Dissect p q => (a -> b) -> p a -> p b

A tail-recursive map operation, implemented in terms of Dissect.

P purescript-dissect M Dissect.Class
defaultFilter :: forall a h f. BooleanEq h => Applicative f => Foldable f => Monoid (f a) => (a -> h) -> f a -> f a
P purescript-filterables M Data.Filterable
everywhereM :: forall m a. Monad m => Data a => (forall b. Data b => b -> m b) -> a -> m a

Apply a monadic transformation everywhere, bottom-up

P purescript-ajnsit-typeable M Data.Data
filter :: forall f h a. Filterable f => BooleanEq h => (a -> h) -> f a -> f a
P purescript-filterables M Data.Filterable
gmapM :: forall m a. Data a => Monad m => (forall d. Data d => d -> m d) -> a -> m a

A generic monadic transformation that maps over the immediate subterms

P purescript-ajnsit-typeable M Data.Data
gmapMo :: forall m a. Data a => MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a

Transformation of one immediate subterm with success

P purescript-ajnsit-typeable M Data.Data
gmapMp :: forall m a. Data a => MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a

Transformation of at least one immediate subterm does not fail

P purescript-ajnsit-typeable M Data.Data
map :: forall a c b. HasMap a => (b -> c) -> a b -> a c
P purescript-neon M Neon.Class.HasMap
map :: forall f a b. Functor f => (a -> b) -> f a -> f b
P purescript-qualified-do M QualifiedDo.ParApply
mkM :: forall a b m. Typeable a => Typeable b => Typeable (m a) => Typeable (m b) => Applicative m => (b -> m b) -> a -> m a
P purescript-ajnsit-typeable M Data.Data
cmap :: forall f a b. Contravariant f => (b -> a) -> f a -> f b
P purescript-contravariant M Data.Functor.Contravariant
censor :: forall w m a. MonadWriter w m => (w -> w) -> m a -> m a

Modify the final accumulator value by applying a function.

P purescript-transformers M Control.Monad.Writer.Class
local :: forall e w a. ComonadEnv e w => (e -> e) -> w a -> w a
P purescript-transformers M Control.Comonad.Env.Class
local :: forall r m a. MonadReader r m => (r -> r) -> m a -> m a
P purescript-transformers M Control.Monad.Reader.Class
seeks :: forall s a w. ComonadStore s w => (s -> s) -> w a -> w a

Reposition the focus at the specified position, which depends on the current position.

P purescript-transformers M Control.Comonad.Store.Class
censorAccum :: forall acc html a. Accum acc html => (acc -> acc) -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Accum.Class
setCtx :: forall ctx html a. Ctx ctx html => (ctx -> ctx) -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Ctx.Class
mapErr :: forall e m a. MonadError e m => (e -> e) -> m a -> m a
P purescript-ts-bridge M TsBridge.Types
all :: forall a b f. Foldable f => HeytingAlgebra b => (a -> b) -> f a -> b

all f is the same as and <<< map f; map a function over the structure, and then get the conjunction of the results.

P purescript-foldable-traversable M Data.Foldable
any :: forall a b f. Foldable f => HeytingAlgebra b => (a -> b) -> f a -> b

any f is the same as or <<< map f; map a function over the structure, and then get the disjunction of the results.

P purescript-foldable-traversable M Data.Foldable
foldMap :: forall f a m. Foldable f => Monoid m => (a -> m) -> f a -> m
P purescript-foldable-traversable M Data.Foldable
foldMap1 :: forall t a m. Foldable1 t => Semigroup m => (a -> m) -> t a -> m
P purescript-foldable-traversable M Data.Semigroup.Foldable
foldMap1DefaultL :: forall t m a. Foldable1 t => Functor t => Semigroup m => (a -> m) -> t a -> m

A default implementation of foldMap1 using foldl1.

Note: when defining a Foldable1 instance, this function is unsafe to use in combination with foldl1Default.

P purescript-foldable-traversable M Data.Semigroup.Foldable
foldMap1DefaultR :: forall t m a. Foldable1 t => Functor t => Semigroup m => (a -> m) -> t a -> m

A default implementation of foldMap1 using foldr1.

Note: when defining a Foldable1 instance, this function is unsafe to use in combination with foldr1Default.

P purescript-foldable-traversable M Data.Semigroup.Foldable
foldMapDefault :: forall i f a m. FoldableWithIndex i f => Monoid m => (a -> m) -> f a -> m

A default implementation of foldMap using foldMapWithIndex

P purescript-foldable-traversable M Data.FoldableWithIndex
foldMapDefaultL :: forall f a m. Foldable f => Monoid m => (a -> m) -> f a -> m

A default implementation of foldMap using foldl.

Note: when defining a Foldable instance, this function is unsafe to use in combination with foldlDefault.

P purescript-foldable-traversable M Data.Foldable
foldMapDefaultR :: forall f a m. Foldable f => Monoid m => (a -> m) -> f a -> m

A default implementation of foldMap using foldr.

Note: when defining a Foldable instance, this function is unsafe to use in combination with foldrDefault.

P purescript-foldable-traversable M Data.Foldable
tracks :: forall w a t. ComonadTraced t w => (a -> t) -> w a -> a

Extracts a value at a relative position which depends on the current value.

P purescript-transformers M Control.Comonad.Traced.Class
asks :: forall e1 e2 w a. ComonadAsk e1 w => (e1 -> e2) -> w a -> e2

Get a value which depends on the environment.

P purescript-transformers M Control.Comonad.Env.Class
peeks :: forall s a w. ComonadStore s w => (s -> s) -> w a -> a

Extract a value from a position which depends on the current position.

P purescript-transformers M Control.Comonad.Store.Class
map :: forall f xs ys fproxy kproxy lproxy. Map f xs ys => fproxy f -> kproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
withCtx :: forall ctx html a. AskCtx ctx html => (ctx -> html a) -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Ctx.Class
getOrAlt :: forall v s r' r l h g f. Alternative h => Cons s v r' r => RowToList r l => RGetOrAlt f g s l r => g s -> f r -> h v
P purescript-struct M Data.Struct.GetOrAlt.GetOrAlt
fromFoldableL :: forall a c f. Foldable f => Consable c => c a -> f a -> c a

Conversion from Foldable to Consable using foldl.

fromFoldableL [] [1,2,3,4]  == [4,3,2,1]
fromFoldableL [0] [1,2,3,4] == [4,3,2,1,0]
P purescript-consable M Data.Consable
fromFoldableR :: forall a c f. Foldable f => Consable c => c a -> f a -> c a

Conversion from Foldable to Consable using foldr.

fromFoldableR [] [1,2,3,4]  == [1,2,3,4]
fromFoldableR [5] [1,2,3,4] == [1,2,3,4,5]
P purescript-consable M Data.Consable
iterate :: forall a u. Unfoldable1 u => (a -> a) -> a -> u a

Create an infinite Unfoldable1 by repeated application of a function to a seed value. Analogous to iterateN, but with no iteration limit.

This should only be used to produce either lazy types (like lazy Lists) or types with truncating Unfoldable1 instances (like Maybe).

P purescript-trivial-unfold M Data.Unfoldable1.Trivial1
liftF :: forall b a f. Applicative f => (a -> b) -> a -> f b
P purescript-simple-parser M Text.Parsing.Util
applyFirst :: forall a b f. Apply f => f a -> f b -> f a

Combine two effectful actions, keeping only the result of the first.

P purescript-prelude M Control.Apply
applySecond :: forall a b f. Apply f => f a -> f b -> f b

Combine two effectful actions, keeping only the result of the second.

P purescript-prelude M Control.Apply
voidRight :: forall f a b. Functor f => a -> f b -> f a

Ignore the return value of a computation, using the specified return value instead.

P purescript-prelude M Data.Functor
alt :: forall f a. Alt f => f a -> f a -> f a
P purescript-control M Control.Alt
choose :: forall m a. MonadGen m => m a -> m a -> m a

Creates a generator that outputs a value chosen from one of two existing existing generators with even probability.

P purescript-gen M Control.Monad.Gen
seek :: forall s a w. ComonadStore s w => s -> w a -> w a

Reposition the focus at the specified position.

P purescript-transformers M Control.Comonad.Store.Class
mulNat :: forall proxy a b c. ProductNat a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
plus :: forall proxy a b c. SumInt a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Int.Definition
plusNat :: forall proxy a b c. SumNat a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
powNat :: forall proxy a b c. ExponentiationNat a b c => proxy a -> proxy b -> proxy c
> powNat d2 d3
8 -- : NProxy D8

a raised to the power of b a^b = c

P purescript-typelevel-peano M Type.Data.Peano.Nat.Definition
prod :: forall proxy a b c. ProductInt a b c => proxy a -> proxy b -> proxy c
P purescript-typelevel-peano M Type.Data.Peano.Int.Definition
sampleOnLeft_ :: forall event a b. IsEvent event => event a -> event b -> event b
P purescript-hyrule M FRP.Event.Class
sampleOnRight_ :: forall event a b. IsEvent event => event a -> event b -> event a

Create an Event which samples the latest values from the first event at the times when the second event fires, ignoring the values produced by the second event.

P purescript-hyrule M FRP.Event.Class
sampleOn_ :: forall b a event. IsEvent event => event a -> event b -> event a

Create an Event which samples the latest values from the first event at the times when the second event fires, ignoring the values produced by the second event.

P purescript-event M FRP.Event.Class
applyFirst :: forall v1 v0 f c. HasApply c f => HasConst c => HasMap c f => ObjectOf c v0 => ObjectOf c v1 => ObjectOf c (c v1 v0) => f v0 -> f v1 -> f v0
P purescript-subcategory M Control.Subcategory.Functor.HasApply
applySecond :: forall v1 v0 f c. HasApply c f => HasConst c => HasIdentity c => HasMap c f => ObjectOf c v0 => ObjectOf c v1 => ObjectOf c (c v1 v1) => ObjectOf c (c v0 (c v1 v1)) => ObjectOf c (c (c v1 v1) (c v0 (c v1 v1))) => f v0 -> f v1 -> f v1
P purescript-subcategory M Control.Subcategory.Functor.HasApply
concat :: forall xs ys zs lproxy. Concat xs ys zs => lproxy xs -> lproxy ys -> lproxy zs
P purescript-typelevel-lists M Type.Data.List
drop :: forall n xs ys lproxy iproxy. Drop n xs ys => iproxy n -> lproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
filled :: forall m a style. MonadCanvasAction m => CanvasStyle style => style -> m a -> m a

Run a MonadCanvasAction with the given fillStyle, resetting it to the previous value after

P purescript-canvas-action M Graphics.CanvasAction
putCtx :: forall a html ctx. Ctx ctx html => ctx -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Ctx.Class
stroked :: forall m a style. MonadCanvasAction m => CanvasStyle style => style -> m a -> m a

Run a MonadCanvasAction with the given strokeStyle, resetting it to the previous value after

P purescript-canvas-action M Graphics.CanvasAction
take :: forall n xs ys lproxy iproxy. Take n xs ys => iproxy n -> lproxy xs -> lproxy ys
P purescript-typelevel-lists M Type.Data.List
tellAccum :: forall acc html a. TellAccum acc html => acc -> html a -> html a
P purescript-chameleon-transformers M Chameleon.Transformers.Accum.Class
zip :: forall x y z lproxy. Zip x y z => lproxy x -> lproxy y -> lproxy z
P purescript-typelevel-lists M Type.Data.List
max1 :: forall f a. Ord1 f => f a -> f a -> f a
P purescript-higher-order M Data.Operator.Ord
min1 :: forall f a. Ord1 f => f a -> f a -> f a
P purescript-higher-order M Data.Operator.Ord
onIntegrityError :: forall m a. MonadError PGError m => m a -> m a -> m a
P purescript-postgresql-client M Database.PostgreSQL.PG
scalarMul :: forall f k. VectorField f k => k -> f k -> f k
  • ∀v in V: one * v == v
  • ∀a b in K, v in V: a * (b .* v) = (a * b) .* v
  • ∀a b in K, v in V:
    • a .* (u + v) = a .* u + a .* v
    • (a + b) .* v = a .* v + b .* v
P purescript-vectorfield M Data.VectorField
alt :: forall f a. Alternative f => f a -> f a -> f a
P purescript-invertible-syntax M Text.Syntax.Classes
cons :: forall t a. Consable t => a -> t a -> t a
P purescript-consable M Data.Consable
cons :: forall f a. Container f => a -> f a -> f a
P purescript-logoot-core M Data.Container
dappend :: forall cnt a. Diff cnt => cnt a -> cnt a -> cnt a
P purescript-difference-containers M Containers.Difference
functorDecorate :: forall b a f. Functor f => Decorate a b => a -> f b -> f a
P purescript-materialize M Materialize.Markup.Decorate
insert :: forall f a. Container f => Ord a => a -> f a -> f a
P purescript-logoot-core M Data.Container
interleave :: forall m a. MonadLogic m => m a -> m a -> m a
P purescript-logic M Control.Monad.Logic.Class
option :: forall a m. Alternative m => a -> m a -> m a
P purescript-parsers M Text.Parsing.Combinators
replaceInArray :: forall a f. HasUuid a => Functor f => a -> f a -> f a
P purescript-liminal M Classes.HasUuid
apply :: forall a b. (a -> b) -> a -> b

Applies a function to an argument. This is primarily used as the operator ($) which allows parentheses to be omitted in some cases, or as a natural way to apply a chain of composed functions to a value.

P purescript-prelude M Data.Function
modify :: forall t a. Newtype t a => (a -> a) -> t -> t

This combinator unwraps the newtype, applies a monomorphic function to the contained value and wraps the result back in the newtype

P purescript-newtype M Data.Newtype
un :: forall t a. Newtype t a => (a -> t) -> t -> a

Given a constructor for a Newtype, this returns the appropriate unwrap function.

P purescript-newtype M Data.Newtype
intercalate :: forall f m. Foldable f => Monoid m => m -> f m -> m

Fold a data structure, accumulating values in some Monoid, combining adjacent elements using the specified separator.

For example:

> intercalate ", " ["Lorem", "ipsum", "dolor"]
= "Lorem, ipsum, dolor"

> intercalate "*" ["a", "b", "c"]
= "a*b*c"

> intercalate [1] [[2, 3], [4, 5], [6, 7]]
= [2, 3, 1, 4, 5, 1, 6, 7]
P purescript-foldable-traversable M Data.Foldable
intercalate :: forall f m. Foldable1 f => Semigroup m => m -> f m -> m

Fold a data structure using a Semigroup instance, combining adjacent elements using the specified separator.

P purescript-foldable-traversable M Data.Semigroup.Foldable
surround :: forall f m. Foldable f => Semigroup m => m -> f m -> m

fold but with each element surrounded by some fixed value.

For example:

> surround "*" []
= "*"

> surround "*" ["1"]
= "*1*"

> surround "*" ["1", "2"]
= "*1*2*"

> surround "*" ["1", "2", "3"]
= "*1*2*3*"
P purescript-foldable-traversable M Data.Foldable
peek :: forall s w a. ComonadStore s w => s -> w a -> a
P purescript-transformers M Control.Comonad.Store.Class
track :: forall t w a. ComonadTraced t w => t -> w a -> a
P purescript-transformers M Control.Comonad.Traced.Class
memoize :: forall a b. Tabulate a => (a -> b) -> a -> b

Memoize a function of one argument

P purescript-open-memoize M Data.Function.Memoize
transAnaT :: forall t f. Recursive t f => Corecursive t f => (t -> t) -> t -> t
P purescript-matryoshka M Matryoshka.Unfold
transCataT :: forall t f. Recursive t f => Corecursive t f => (t -> t) -> t -> t
P purescript-matryoshka M Matryoshka.Fold
askRunInBase :: forall b m a. MonadUnlift b m => m (m a -> b a)

A monomorphic version of askUnlift which can be more convenient when you only want to use the resulting runner function once with a concrete type.

If you run into type issues using this, try using askUnlit instead.

P purescript-unlift M Control.Monad.Unlift
buildLeaf :: forall e f p v. ElementBuilder e f p v => e -> f p -> v
P purescript-concur-core M Concur.Core.ElementBuilder
get :: forall v s r' r l g f. Cons s v r' r => RGet f g s l r => RowToList r l => g s -> f r -> v
P purescript-struct M Data.Struct.Get.Get
match :: forall v r1 r0 l1 l0 g f. RMatch f g v l0 r0 l1 r1 => RowToList r0 l0 => RowToList r1 l1 => f r0 -> g r1 -> v
P purescript-struct M Data.Struct.Match.Match
memoize :: forall b a. Tabulate a => (a -> b) -> a -> b

Memoize a function of one argument

P purescript-memoize M Data.Function.Memoize
over :: forall s t a b @sym lenses. IsSymbol sym => ParseSymbol sym lenses => ConstructBarlow lenses Function s t a b => (a -> b) -> s -> t
P purescript-barlow-lens M Data.Lens.Barlow.Helpers
applicator :: forall b a. (a -> b) -> a -> b

A combinator - applicator

Λ a b . (a → b) → a → b

λ f x . f x

P purescript-birds M Aviary.Birds
askRunBase :: forall a stM m base. MonadBaseUnlift base m stM => Applicative base => m (m a -> base a)
P purescript-monad-unlift M Control.Monad.Trans.Unlift
consMax :: forall a f. Foldable f => Ord a => a -> f a -> a
P purescript-liminal M Data.Geometry.BoundingBox
consMin :: forall a f. Foldable f => Ord a => a -> f a -> a
P purescript-liminal M Data.Geometry.BoundingBox
everywhere :: forall a. Data a => (forall b. Data b => b -> b) -> a -> a

Apply a transformation everywhere, bottom-up

P purescript-ajnsit-typeable M Data.Data
everywhere' :: forall a. Data a => (forall b. Data b => b -> b) -> a -> a

Apply a transformation everywhere, top-down

P purescript-ajnsit-typeable M Data.Data
foldMap :: forall a b s. Convert s (Statements a) => Monoid b => (a -> b) -> s -> b
P purescript-qualified-do M QualifiedDo.FoldMap
gmapT :: forall a. Data a => (forall b. Data b => b -> b) -> a -> a

A generic transformation that maps over the immediate subterms

P purescript-ajnsit-typeable M Data.Data
idstar :: forall b a. (a -> b) -> a -> b

I* combinator - id bird once removed

S(SK)

Λ a b . (a → b) → a → b

λ f x . f x

P purescript-birds M Aviary.Birds
local :: forall a b r. (a -> b) -> (Ask b => r) -> (Ask a => r)

Run a function over an implicit parameter

Note: Be careful while using this to map over the value without updating the type.

-- evaluates to `1`, not `2`
provide 1 (local ((*) 2) (ask @Int))
P purescript-ask M Control.Ask
mapUndefined :: forall b a. (a -> b) -> a -> b
P purescript-reactnative M ReactNative.Internal.Undefinable
memoize :: forall a b. (a -> b) -> a -> b

Memoize the function f. If the argument of f differs from the previous call, then f is recomputed.

P purescript-pha M Pha.Util
mkT :: forall a b. Typeable a => Typeable b => (b -> b) -> a -> a
P purescript-ajnsit-typeable M Data.Data
moldMap :: forall t e m. Moldable t e => Monoid m => (e -> m) -> t -> m
P purescript-moldy M Data.Moldy
moldMapDefaultL :: forall m e t. Moldable t e => Monoid m => (e -> m) -> t -> m
P purescript-moldy M Data.Moldy
moldMapDefaultR :: forall m e t. Moldable t e => Monoid m => (e -> m) -> t -> m

A default implementation of moldMap based on moldr

P purescript-moldy M Data.Moldy
nmap :: forall fa fb a b. NestedFunctor fa fb a b => (a -> b) -> fa -> fb
P purescript-nested-functor M Data.Functor.Nested
sequence :: forall t a m. Traversable t => Applicative m => t (m a) -> m (t a)
P purescript-foldable-traversable M Data.Traversable
sequence1 :: forall t b f. Traversable1 t => Apply f => t (f b) -> f (t b)
P purescript-foldable-traversable M Data.Semigroup.Traversable
sequence1Default :: forall t a m. Traversable1 t => Apply m => t (m a) -> m (t a)

A default implementation of sequence1 using traverse1.

P purescript-foldable-traversable M Data.Semigroup.Traversable
sequenceDefault :: forall t a m. Traversable t => Applicative m => t (m a) -> m (t a)

A default implementation of sequence using traverse.

P purescript-foldable-traversable M Data.Traversable
distribute :: forall f a g. Distributive f => Functor g => g (f a) -> f (g a)
P purescript-distributive M Data.Distributive
distributeDefault :: forall a f g. Distributive f => Functor g => g (f a) -> f (g a)

A default implementation of distribute, based on collect.

P purescript-distributive M Data.Distributive
parSequence :: forall a t m f. Parallel f m => Applicative f => Traversable t => t (m a) -> m (t a)
P purescript-parallel M Control.Parallel
sequence :: forall m p q a. Dissect p q => MonadRec m => p (m a) -> m (p a)

A tail-recursive sequence operation, implemented in terms of Dissect.

P purescript-dissect M Dissect.Class
sequence :: forall c b a. HasApply b => HasMap b => HasTraverse a => HasPure b => a (b c) -> b (a c)

Sequences actions and collects the results.

sequence [Just 1, Just 2] -- Just [1, 2]
P purescript-neon M Neon.Helper
join :: forall a m. Bind m => m (m a) -> m a

Collapse two applications of a monadic type constructor into one.

P purescript-prelude M Control.Bind
voidLeft :: forall f a b. Functor f => f a -> b -> f b

A version of voidRight with its arguments flipped.

P purescript-prelude M Data.Functor
fix :: forall l. Lazy l => (l -> l) -> l

fix defines a value as the fixed point of a function.

The Lazy instance allows us to generate the result lazily.

P purescript-control M Control.Lazy
oneOf :: forall f g a. Foldable f => Plus g => f (g a) -> g a

Combines a collection of elements using the Alt operation.

P purescript-foldable-traversable M Data.Foldable
oneOf :: forall m f a. MonadGen m => Foldable1 f => f (m a) -> m a

Creates a generator that outputs a value chosen from a selection of existing generators with uniform probability.

P purescript-gen M Control.Monad.Gen
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u a

Returns a contiguous sequence of elements from the first value to the second value (inclusive).

enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']

The example shows Array return values, but the result can be any type with an Unfoldable1 instance.

P purescript-enums M Data.Enum
asks :: forall r m a. MonadAsk r m => (r -> a) -> m a

Projects a value from the global context in a MonadAsk.

P purescript-transformers M Control.Monad.Reader.Class
gets :: forall s m a. MonadState s m => (s -> a) -> m a

Get a value which depends on the current state.

P purescript-transformers M Control.Monad.State.Class
modify :: forall s m. MonadState s m => (s -> s) -> m s

Modify the state by applying a function to the current state. The returned value is the new state value.

P purescript-transformers M Control.Monad.State.Class
parOneOf :: forall a t m f. Parallel f m => Alternative f => Foldable t => Functor t => t (m a) -> m a

Race a collection in parallel.

P purescript-parallel M Control.Parallel
wrapFree :: forall f m a. MonadFree f m => f (m a) -> m a
P purescript-free M Control.Monad.Free.Class
integrateM :: forall a stM m base. Applicative base => MonadBaseControl base m stM => m (stM a) -> m a

Pack a state belonging to m back into it, instead of throwing it away

P purescript-monad-control M Control.Monad.Trans.Control
restoreM :: forall base m stM a. MonadBaseControl base m stM => base (stM a) -> m a
P purescript-monad-control M Control.Monad.Trans.Control
keepLatest :: forall event a. IsEvent event => event (event a) -> event a
P purescript-hyrule M FRP.Event.Class
keepLatest :: forall event a. IsEvent event => event (event a) -> event a
P purescript-event M FRP.Event.Class
join :: forall v m c. HasBind c m => HasIdentity c => ObjectOf c (m v) => m (m v) -> m v
P purescript-subcategory M Control.Subcategory.Functor.HasBind
flipScalarMul :: forall k f. VectorField f k => f k -> k -> f k
P purescript-vectorfield M Data.VectorField
rsingleton :: forall f g s v r. RSingleton f g s => Cons s v () r => Lacks s () => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton.RSingleton
singleton :: forall v s r g f. Cons s v () r => Lacks s () => RSingleton f g s => g s -> v -> f r
P purescript-struct M Data.Struct.Singleton
choice :: forall a g f. Foldable f => Alt g => Plus g => f (g a) -> g a
P purescript-simple-parser M Text.Parsing.Simple
fix :: forall a. (a -> a) -> a

Fixed point Y combinator

Λ a . (a → a) → a

λ f . (λ x. f (x x)) (λ x . f (x x))

P purescript-birds M Aviary.Birds
fix :: forall a. (a -> a) -> a
P purescript-combinators M Data.Combinators
flatten :: forall b a. HasChain a => a (a b) -> a b

Removes a level of nesting from a container.

flatten [[1, 2], [3, 4]] -- [1, 2, 3, 4]
P purescript-neon M Neon.Helper
foldEnum :: forall a b. BoundedEnum a => Semigroup b => (a -> b) -> b

Map each element of a BoundedEnum into a semigroup, and combine the results through refold1.

P purescript-trivial-unfold M Data.Unfoldable1.Trivial1
functorDecorateFlipped :: forall b a f. Functor f => Decorate b a => f a -> b -> f b
P purescript-materialize M Materialize.Markup.Decorate
invokeAction :: forall m res args ctrl act. RemoteAction act ctrl args res => MonadReader Visualforce m => MonadAff m => MonadError RemoteActionError m => IsSymbol ctrl => Encode args => Decode res => act -> args -> m res

Function that invoke the action defined by referring to contraints which holds details about the correct controller to invoke. Example:

data PCMRequests = ..

data CreatePCMRequests = CreatePCMRequests

instance remoteActionCreatePCMs :: RemoteAction CreatePCMRequests "PCMMassController.createRecords" PCMRequests Unit

createPCMRequest :: Visualforce -> PCMRequests -> Aff (Either RemoteActionError Unit)
createPCMRequest vf rec =  runReaderT (runExceptT $ invokeAction CreatePCMRequests rec) vf
P purescript-sforce-remote-action M Salesforce.RemoteAction
oneOf :: forall a m f. Foldable f => Alternative m => f (m a) -> m a
P purescript-parsers M Text.Parsing.Combinators
snoc :: forall f a. Container f => f a -> a -> f a
P purescript-logoot-core M Data.Container
tabulate :: forall f a b. Representable f a => (a -> b) -> f b
P purescript-functor-vector M Data.Functor.Representable
warbler :: forall m a. Bind m => m (m a) -> m a

W combinator - warbler - omega

MM

Λ a b . (a → a → b) → a → b

λ f x . f x x

P purescript-birds M Aviary.Birds
add :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
append :: forall a. Semigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup
conj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
const :: forall a b. a -> b -> a

Returns its first argument and ignores its second.

const 1 "hello" = 1

It can also be thought of as creating a function that ignores its argument:

const 1 = \_ -> 1
P purescript-prelude M Data.Function
disj :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
div :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> a

The greatest common divisor of two values.

P purescript-prelude M Data.EuclideanRing
genericAdd :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the add member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericAdd' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericAppend :: forall a rep. Generic a rep => GenericSemigroup rep => a -> a -> a

A Generic implementation of the append member from the Semigroup type class.

P purescript-prelude M Data.Semigroup.Generic
genericAppend' :: forall a. GenericSemigroup a => a -> a -> a
P purescript-prelude M Data.Semigroup.Generic
genericConj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the conj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericConj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the disj member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericDisj' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies :: forall a rep. Generic a rep => GenericHeytingAlgebra rep => a -> a -> a

A Generic implementation of the implies member from the HeytingAlgebra type class.

P purescript-prelude M Data.HeytingAlgebra.Generic
genericImplies' :: forall a. GenericHeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra.Generic
genericMul :: forall a rep. Generic a rep => GenericSemiring rep => a -> a -> a

A Generic implementation of the mul member from the Semiring type class.

P purescript-prelude M Data.Semiring.Generic
genericMul' :: forall a. GenericSemiring a => a -> a -> a
P purescript-prelude M Data.Semiring.Generic
genericSub :: forall a rep. Generic a rep => GenericRing rep => a -> a -> a

A Generic implementation of the sub member from the Ring type class.

P purescript-prelude M Data.Ring.Generic
genericSub' :: forall a. GenericRing a => a -> a -> a
P purescript-prelude M Data.Ring.Generic
implies :: forall a. HeytingAlgebra a => a -> a -> a
P purescript-prelude M Data.HeytingAlgebra
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> a

The least common multiple of two values.

P purescript-prelude M Data.EuclideanRing
leftDiv :: forall a. DivisionRing a => a -> a -> a

Left division, defined as leftDiv a b = recip b * a. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
max :: forall a. Ord a => a -> a -> a

Take the maximum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
min :: forall a. Ord a => a -> a -> a

Take the minimum of two values. If they are considered equal, the first argument is chosen.

P purescript-prelude M Data.Ord
mod :: forall a. EuclideanRing a => a -> a -> a
P purescript-prelude M Data.EuclideanRing
mul :: forall a. Semiring a => a -> a -> a
P purescript-prelude M Data.Semiring
rightDiv :: forall a. DivisionRing a => a -> a -> a

Right division, defined as rightDiv a b = a * recip b. Left and right division are distinct in this module because a DivisionRing is not necessarily commutative.

If the type a is also a EuclideanRing, then this function is equivalent to div from the EuclideanRing class. When working abstractly, div should generally be preferred, unless you know that you need your code to work with noncommutative rings.

P purescript-prelude M Data.DivisionRing
sub :: forall a. Ring a => a -> a -> a
P purescript-prelude M Data.Ring
duplicate :: forall a w. Extend w => w a -> w (w a)

Duplicate a comonadic context.

duplicate is dual to Control.Bind.join.

P purescript-control M Control.Extend
unfoldable :: forall m f a. MonadRec m => MonadGen m => Unfoldable f => m a -> m (f a)

Creates a generator that produces unfoldable structures based on an existing generator for the elements.

The size of the unfoldable will be determined by the current size state for the generator. To generate an unfoldable structure of a particular size, use the resize function from the MonadGen class first.

P purescript-gen M Control.Monad.Gen
unwrapCofree :: forall f w a. ComonadCofree f w => w a -> f (w a)
P purescript-free M Control.Comonad.Cofree.Class
sans :: forall m a b. At m a b => a -> m -> m
P purescript-profunctor-lenses M Data.Lens.At
fork :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
suspend :: forall f m a. MonadFork f m => m a -> m (f a)
P purescript-fork M Control.Monad.Fork.Class
add :: forall x y z. Add x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
and :: forall b1 b2 b3. And b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
div :: forall x y z. Div x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
eq :: forall b1 b2 b3. Eq b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
gcd :: forall x y z. GCD x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
imp :: forall b1 b2 b3. Imp b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
max :: forall x y z. Max x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
min :: forall x y z. Min x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
mod :: forall x y r. Mod x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
mul :: forall x y z. Mul x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
or :: forall b1 b2 b3. Or b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
sub :: forall x y z. Sub x y z => x -> y -> z
P purescript-typelevel M Data.Typelevel.Num.Ops
trich :: forall x y r. Trich x y r => x -> y -> r
P purescript-typelevel M Data.Typelevel.Num.Ops
xor :: forall b1 b2 b3. Xor b1 b2 b3 => b1 -> b2 -> b3
P purescript-typelevel M Data.Typelevel.Bool
hmap :: forall f a b. HMap f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
hmapWithIndex :: forall f a b. HMapWithIndex f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
mapping :: forall f a b. Mapping f a b => f -> a -> b
P purescript-heterogeneous M Heterogeneous.Mapping
resulting :: forall f acc x. Resulting f acc x => f -> acc -> x
P purescript-heterogeneous M Heterogeneous.Variadic
variadic :: forall f acc args. Variadic f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
variadicWithIndex :: forall f acc args. VariadicWithIndex f acc args => f -> acc -> args
P purescript-heterogeneous M Heterogeneous.Variadic
call :: forall s. IsString s => Monoid s => s -> s -> s

Syntax for CSS function call.

P purescript-css M CSS.Common
reduce :: forall f i o. Reducible f i o => f -> i -> o
P purescript-untagged-union M Untagged.Union
lact :: forall g s. LeftAction g s => g -> s -> s
P purescript-group M Data.Group.Action
ract :: forall g s. RightAction g s => s -> g -> s
P purescript-group M Data.Group.Action
convertOptions :: forall t i o. ConvertOptions t i o => t -> i -> o
P purescript-convertable-options M ConvertableOptions
defaults :: forall defaults provided all. Defaults defaults provided all => defaults -> provided -> all
P purescript-convertable-options M ConvertableOptions
maddL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
maddR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
mmulL :: forall x r. LeftModule x r => r -> x -> x
P purescript-modules M Data.Ring.Module
mmulR :: forall x r. RightModule x r => x -> r -> x
P purescript-modules M Data.Ring.Module
msubL :: forall x r. LeftModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
msubR :: forall x r. RightModule x r => x -> x -> x
P purescript-modules M Data.Ring.Module
bindTo :: forall f o. f -> o -> f
P purescript-ffi-simple M FFI.Simple.Functions
defaultUndef :: forall a. a -> a -> a
P purescript-ffi-simple M FFI.Simple.Undef
new :: forall f a o. f -> a -> o

Call new on the function with an array or pseudoarray of arguments

P purescript-ffi-simple M FFI.Simple.Functions
dot :: forall p n. ToPos n p => Semiring n => p -> p -> n

Get the dot product of two vectors

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
mapProduct :: forall mp a b. MapProduct mp a b => mp -> a -> b
P purescript-classless M Classless
putInsideMod :: forall r p n. ToRegion n r => AsPosEndo n p => EuclideanRing n => r -> p -> p

Put a position inside a region by using the modulus operator

P purescript-polymorphic-vectors M Data.Vector.Polymorphic
act :: forall m s. Action m s => m -> s -> s

Convert a value of type @m@ to an action on @s@ values.

P purescript-monoid-extras M Data.Monoid.Action
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpure M HTTPure.Lookup
at :: forall c k r. Monoid r => Lookup c k r => c -> k -> r

This simple helper works on any Lookup instance where the return type is a Monoid, and is the same as lookup except that it returns a t instead of a Maybe t. If lookup would return Nothing, then at returns mempty.

P purescript-httpurple M HTTPurple.Lookup

No further results.